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DIFFUSION APPROXIMATIONS

by

Peter W. Glynn

Abstract

This paper provides a survey of some of the basic applications of the theory of

diffusion approximation to queueing theory. The paper starts with a brief description of

the theory of weak convergence of stochastic processes. This theory is then applied to

the study of networks of queues in heavy traffic. The resulting approximations involve

diffusion processes with reflecting boundaries. Queues in which both the number of

servers and nmber of customers are large are also studied. In this case, the queueing

processes are best approximated by Gaussian processes. The paper is intended to give

the non-specialist a self-contained introduction to what is a rapidly developing area of

applied probability.
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DIFFUSION APPROXIMATIONS
Peter W. Glynn

Department of Operations Research
Stanford University

Stanford, CA 94305-4022

1. introduction

In this chapter, we shall give an overview of some of the basic applications of the theory

of diffusion approximations to operations research. A diffusion approximation is a tech-

nique in which a complicated and analytically intractable stochasLic process is repiaced by"

an appropriate diffusion process. A diffusion process is a (strong) Markov process havirnz

continuous sample paths. Diffusion processes have a great deal of analytical structure and

are therefore typically more mathematically tractable than the original process with which

one starts. The approach underlying the application of diffusion approximations is there-

fore comparable to that underlying normal approximation for sums of random variables.

In the latter setting, the central limit theorem permits one to replace the analytically

intractable sum of random variables by an appropriately chosen normal random variable.

In this chapter, we shall describe some of the basic theory of weak convergence that

underlies the method of diffusion approximation. We shall then survey various applications

of this methodology to the approximation of complex queueing systems. The chapter is

organized as follows:

1. Introduction

2. Weak Convergence of Stochastic Processes

3. Verification Criteria for Weak Convergence of 5: -crh,:-tic Processes

4. Donsker's Theorem

5. Weak Convergence Theorems for the Single-Server Queue

6. Background on Diffusion Processes

7. Diffusion Approximations for an Open Network of Queues in Heavy Traffic

8. Diffusion Approximations for a Closed Network of Queues in Heavy Traffic

9. Approximations for Queues with Many Servers

10. Conditional Weak Convergence Theorems



Because we are interested in developing approximations for the distribution of a process

(considered as a random function of time), it is necessary for us to describe the basic

elements of the theory of weak convergence in a function space. Sections 2 and 3 are

therefore devoted to this topic. Section 4 discusses the most basic and easily understood

of all diffusion approximations, namely the general principle that sums of random variables

(when viewed as stochastic pr,--esses) can be approximated by Brownian motion, this result

is known, in the literature, as Donsker's theorem. By using the close correspondence

between random walk and the single-server queue, Section 5 develops the basic theory of

weak convergence for the GI/G/1/o queue. This forms valuable background for the more

complex diffusion approximations that appear in the network setting of Sections 7 and S

Section 6 gives a brief overview of some of the basic analytical theory of diffusion processes.

In particular. we show that a large number of interesting performance measures can be

calculated as solutions to certain associated partial differential equations.

The next three sections describe various appiicatigns of the theory of weak convergence

to a network of queues. In Sections 7 and 8, diffusion approximations for both open and

closed networks of queues in heavy traffic are given. The complex behavior of the queueing

model is replaced by a more tractable "Brownian network." By Brownian network, we refer

to a diffusion process which is obtained by subjecting a Brownian motion to reflection at

the boundaries of an appropriately defined region which occurs as the "limiting state

space" of the queueing network. Section 9 discusses further weak convergence theorems

that describe the behavior of queueing zietworks in which the number of servers is large.

The limit processes that arise in this setting are quite different from the Brownian networks

of Sections 7 and 8.

Section 10 concludes the chapter with a brief description of the notion of conditional

weak convergence theorems. Several conditional limit theorems for the single-server queue

are described.

Although this chapter concentrates on describing the applications of diffusion approx-

imations to queueing networks, there are additional operations research applications that

have been enriched by the theory. We list several such areas here, to give the reader a flavor

of the broad impact that these methods have had on operations research. One impor: an:

example is the application of geometric Brownian motion to the optimization of financia'

gain from trading securities. The resulting Black-Scholes option pricing formula has had a
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major impact on the theory of finance; see DUFFIE and PROTTER (1988) for a descrip-

tion of the basic limit theorem. Another applications area that has been impacted by the

theory of diffusion approximation is storage theory. YAMADA (1984) obtains diffusion

approximations for a class of storage systems characterized by a nonlinear release rule.

The theory of diffusion approximation has also benefitted discrete-event simulation. For

example, one important output analysis technique, known as standardized time series, has

been developed on the basis of the approximation associated with Donsker's theorem. See

SCHRUBEN (1983) and GLYNN and IGLEHART (1989) for details. The above is but a

partial list of the various operations rsearch applications to which the theory of diffusion

approximation has contributed.

As stated above, this chapter focuses on providing an overview of some of the key

features of diffusion approximation theory. as it applies to queues. It is not intended to

serve as a historical perspective on the development of the field. The author apologizes,

in advance, to the many contributors to the area that have not been adequately cited.

2. Weak Convergence of Stochastic Processes

Suppose that Y = {Y(t) : > 0} is a complex, analytically intractable stochastic process.

The idea underlying a diffusion approximation is to find a diffusion process X such that

the distribution of Y may be approximated by that of X. Specifically, we write this as

(2.1) Y X

ii denoted "approximately equal in distribution to"). To make more precise sense of

(2.1), the standard approach is to phrase the approximation in terms of a limit theorem.

In other words, we suppose that there exists a sequence {X. : n > 0) of stochastic processes

= {X,(t) : > 0) such that Y may be identified with x., where n is large. Then. the

precise meaning of (2.1) is that the limit theorem

(22) X, X

holds, where =, denotes "convergence in distribution". The remainder of this section is de-

voted to describing in more detail the notion of convergence (2.2); this type of convergence

is frequently termed weak convergence.

We start by reviewing the notion of weak convergence of random variables on the rea.
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line. A sequence {X : n > 0} of r.v. 's is said to converge weakly to X if

(2.3) PfX, < r - P{X < z}

as n - oo at all continuity points z of the limit distribution function P{X < .}. This

convergence notion can be reformulated in many different ways. The reformulation which
we shall find convenient here is given by the following proposition.

Proposition 1. A sequence of r.v.'s (X, : n > 0) converges weakly to x if and only if there
exists a probability space (f,F, P) supporting a family of r.v.'s {X', X' "n > O} such that:
i) V X', (i.e. X,, and Xn, have the same distribution for each n > 0).

ii) X 2 X' (i.e. X and X' have the same distribution).

iii) X, -X' a.s. as n - -x on (Q.Y. P).

To gain some insight into Proposition 1, observe that if one is given weak convergence

of X, to X. then one may construct the r.v.'s X,,X' in the following way. Let (,Y.P)

support uniform distribution on [0, 1] and set

X' = F;I(U)

X' = F-(U)

where U is a uniform r.v., F;(z) = sup(y : F(y) < z), F-(z) = sup{y : F(y) < z1. It is

well known that X, 2_ xn, x' 2= X. Furthermore, it is easily verified that if X, = X.

then F;,'(U) - F-(U) a.s. as n - oc, yielding iii). To start from i)-iii) and obtain weak

convergence is even more trivial.

Proposition 1 indicates the approach that one needs to take in order to describe weak
convergence of stochastic processes. Examining the proposition, everything generalizes

easily from the r.v. context to the process setting (i.e. the setting in which the random
elements X,, X are random functions) except iii). But iii) shows that in order to describe
weak convergence in a function space setting, it is first necessary to describe a notion of

convergence in function space, so that X, - X' makes sense.

The most natural way to do this is to define a metric d on the function space, so that

X' - X' means d(X,,, X') -0 . We start by describing the function space. Most operations
research applications involve the study of stochastic processes having sample paths tha'
are right continuous with left limits. This leads us to consider here the function space

,xQ. ,x)i - E such that (-) is right continuous !

DE[0.X) = { for every t > 0 and has left limits at every t > 0
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We shall further require the range E to be Euclidian space. This function space is well

suited, for example, to the study of queueing processes, in which the process might cor-

respond to the queue-length vector at time t in a queueing network. We turn now to a

description of a metric d which is suitable for the space DE[O,oo).

Any "good" metric d on the space DE[O, oo) should be able to deal with the following

two examples:

a) Suppose that for all T > 0, IIz. - iliT - 0 as n - oo, where 1I I i1 is the uniform norm on

[0, 7 defined by

1i-1T = sup{Iz(t)J: 0 < t < T).

Then, it should follow that d(z,,,z)- 0 as n- oc.

b) Given that z,(t) = I(t < 1 - 1/nz(t) = I(t < 1),z,, should converge to z in the metric d.

in the sense that d(:,, z) - 0 as n - o.

Example a) states that if z, converges to z "nicely" (i.e. in the topology of uniform

convergence on compact sets), this should imply convergence in the metric d. Example b)

requires that the metric d should be flexible enough to deal with the difficulties that arise

in describing closeness of discontinuous functions. (Note that in b), lII,, - zJlT = I for T > 2.)

The Skorohod metric d on DE(0. oc) has these properties and is therefore well adapted to

the study of DE[0. oc). In order to deal with problem b) above, one observes that z,, = z o A,

where A,,(t) = t + 1/n. So, z, is merely z in which the time scale is changed from A(t) = t to

A,,. Thus, the Skorohod metric judges two functions z and v to be "close" if there exis's

a "small" time deformation of y such that the time-deformed y is "close" to z. See pp.

116-122 of ETHIER and KURTZ (1986) for a rigorous description of the Skorohod metric.

Assume that we have a family of processes (X, X, : n> 0), for which the sample functions

live in DE[O,oo) (i.e. X e DB(O,oo),X, E DE[0,oo)). Following Proposition 1, we adopt the

following definition of weak convergence of X, to X.

Definition 1. If X.,X E DE[O, oc), we say that x, converges weakly to X (written X, =>.V

if there exists a probability space ( P.7, P) supporting a family of r.v.'s {X'" X, : n > 0} Such

that:
0) X, E= X , X =- X

ii) d(X.,..X') - 0 as as n - x. where d is the Skorohod metric on D[00.
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We remark that the family {X', X', : n > o} is known as the Skorohod representation of

{XX, > 0).

The definition of weak convergence or D([0, oo) can be recast in a somewhat different

form. Consider a function h: D(0,oo) - DE[O,oo). The function h is said to be continuous

at z if d(h(z.),h(z)) -0 as n - oc whenever d(z.,z)- 0. Let S,% {z E DE(0, oo) : h is continu-

ous at z). Observe that if d(X',X') - 0 a.s. with P(X' E Si} = 1, then d(h(X,),h(X')) - 0 a.s.

which in turn implies that h(X,) = h(X). We therefore obtain the following proposition.

known as the continuous mapping principle.

Proposition 2. Let S% be the set of continuity points of a map h : Dz[o, 0) - DE[0, X). If

X,, =, X as n - = and P{X E Sh} = 1, then h(X,,) =, h(X) as n - c.

As we shall see later, the continuous mapping principle has a wealth of applications. A

second variant of the continuous mapping principle is also useful. A function h : DE[0, 0c) -

R is said to be continuous at z E DE[0, 00) if Ijh(z,)-h(z)I -0 (l1 '1 is Euclidian norm on Rd.)

whenever d(z,,,z) - 0. Again, set Sh = {z E DE[0,00) -/h is continuous at z). The following

result is the analog of Proposition 2 for this new class of A's.

Proposition ?. Let S, be t',e set of ;ontinuity points of the map h : DE[0,ac) - R'. If

X,, = X as - 00 and P{X E Sh} = 1, then h(X,,) =* h(X) as n - oo. (The weak convergence

of h(X,) is standard weak convergence on Rd.)

Because of the importance of this result, it is convenient to have simpler criteria for

verifying that P{X E Sj) = I for a given map h. Recall that in the diffusion approxima-

tion setting, the limit process X generally is a diffusion process having continuous paths.

Therefore, in order to show that P(X e Sk} = 1, it suffices to prove that h is continuous at

each continuous function z E DE[0, 00). The following proposition is useful in verifying the

appropriate condition.

Proposition 4. Suppose z E CE(O, x). the space of continuous functions z: (0.x) - E.

If z, E DE[O,x), then d(z.,z) - 0 as n - xc is equivalent to requiring that for each 7 >

0. ii, - ziiT - 0 as n - -)c.

Thus. if it is known that the limi- P--CC0s X E CEiO. x. the vasding of P.X E Sw :
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may be verified by showing that Ilh(z,) - hz) - 0 as n - oo for each family {zz, n > 0}

such that

i) Z ECE[0, 00) -

ii) For each T > 0, llz I - zIIT - 0 as n - o.

As a consequence of this observation, it is often unnecessary to deal explicitly with the

Skorohod metric d; instead, one can work with the more easily manipulated topology of

uniform convergence on compact sets.

Specializing Proposition 3 to d = 1, Proposition 3 shows that if X. = X in DE[0. c).

then h(X,) =s h(X) in R whenever h DE[0,00) - B? is continuous (i.e. Sh = D-(0.0c)). The

bounded convergence theorem thus implies that if X, = X, then

(2.4) Eh(X,) - Eh(X)

for all bounded continuous h : DE[O, oo) - JR. The following theorem states that (2.4) is

in fact equivalent to weak convergence in DE[0,X); see ETHIER and KURTZ (1986) for

further discussion.

Theorem 1. Suppose X,,X E DE[0,o) for n > o. Then X. = X as - oo if and only If

Eh(X,,) - Eh(X) as n - = for all bounded continuous functions h : Dr[O, oo) - JR.

In most references on weak convergence of stochastic processes, the reformulation of

weak convergence suggested by Theorem 1 is in fact taken as the definition of weak con-

vergence.

3. Verification Criteria for Weak Convergence of Stochastic Processes

In Section 2, the notion of weak convergence of stochastic processes was made precise.

Our goal in this section is to give some idea of what is involved mathematically in proving

that a limit theorem x,, =D X holds.

We first observe that the projection map r,, A, : DE[0, 3) - Rd (recall that E = R

is continuous at every z E CE[0, 00), where

Applying the continuous mapping principle expressed by Proposition 3, we obtain :"e

following result: If X E CE%0. x) and X., : x. then for every collection ti. t. o1 :of >

7



indices, it must be that

(3.1) (X ,,(it),. .... (,, ): (X ( t ..... X (t, ))

-as n - 00. Relation (3.1) asserts that if the limit process X has continuous paths (as is

the case for a diffusion limit process), then the finite-dimensional distributions of X, must

converge weakly to those of X.

One might expect that (3.1) is also sufficient to guarantee weak convergence of X, to

X, but this is not so, as the following example illustrates.

Example 1. For U uniform on [0. 1, set

X,.(t) = exp(-n(t - U) 2 )

for t > 0. Note that for 0 < t I < ... < t,,

l( t ,( ), .... \(,(,, X : .(t 1) .. .X (t, ))

where X(t) = 0 for t > 0. Hence, the finite-dimensional distributions of X, converge to

those of X, where X,, X E CE[0,00). On the other hand, X,, does not converge weakly to

X. To see this, consider h(z) = max{jz(t)j : 0 < t < i}, and observe that h is continuous at

any : E CE[0,oo). Since X E C5 [0, 00), the continuous mapping principle would assert that

h(X.) * h(X) if X,, . X. However, h(X,,) = 1, whereas h(X) = 0, contradicting the weak

convergence of X, to X.

Thus, the notion of weak convergence in DE[0, zc) requires something more than weak

convergence of the corresponding finite-dimensional distributions. To argue that X. X

involves the following circle of ideas.

Definition 2. Given a family {P,p: n > 0} of probability measures on 0 = DE!0O.

say that P, converges weakly to P (written P, =, P) if

fn h(-P,(d-) - fnh(-)P(d)

for all bounded continuous functions h Q - P.

By Theorem 1. x., =: x if and only if P., z P. where P,() = P{.X., E } and P( ) = P{.\ '-

It turns out that weak convergence of the probability measures P., to P can be form.ulatec



in terms of convergence in a certain metric p. To be precise, let P = {Q: Q is a probability

measure on DE[O, o)}. There exists a metric p on P such that P, = P as n - 0 is equivalent

to requiring that-p(P,, P) - 0 as n - :..., the metric p is called the Prohorov metric. Thus.

the notion of weak convergence has been recast in terms of convergence in a certain metric

p.

A standard approach to proving that z, - z when the z,,'s and z are elements of a

metric space is to proceed via the following two steps:

i) Show that the sequence {r,, 'n > 0} is relatively compact, in the sense that every

subsequence z,, has a further conve:gent subsequence z,,,.

ii) Show that every convergent subsequence z, of Z,' must converge to z.

The first step shows that every subsequence has a limit point, whereas the second step

proves that the only possible limit point of {z, n > 0} is z. Thus, the second step involves

identifying the set of all possible limit points. Returning to the space P, we wish to obtain

a condition for identifying the set of limit points of a sequence {P,: n > 0.

Theorem 2. Consider {P, P, : n > 01 where P,( ) = P{X,, E .}, P(.) = P{X E .1 and E .\"

DE[0. X). If the finite-dimensional distributions of X, converge to those of X (i.e. if (3.1

holds), then the only possible limit point of {P,. n > 0} is P.

Thus, Theorem 2 shows that convergence of the finite-dimensional distributions is

important in identifying the set of possible limit points of P,.

Returning to step one of the convergence proof outlined, we need to obtain criteria

guaranteeing relative compactness of a sequence {P, : n > 0} of probability measures in P.

The following theorem, due to Prohorov, throws the question of compactness in P back

,nto determining compactness in DE[0oc).

Theorem 3. Consider {P, n > 0} where P, E P. Then. {P, n > 0} is relatively compa.c:

in p (ie. for every subsequence n', there exists a further subsequence n" and a probability

measure P" E P such that p(P,,. P") - 0 as n" - x) if and only if for every c > 0. there

ex~sts a compact set K<, Z DEO x (i.e. compact in the metric d on DE[O. x)) such that

.3 2 inf P, K, I I-f



Because of the obvious importance of the notion (3.2), it has received a name.

Definition 3. A family {P, E P: n > 0) of probability measures on DE[O,00) is said to be

tight if for every C > 0, there exists a compact set K, C_ D[O, ao) such that inf,>0 P,(K,) > I-C.

We can now state the conventional "first-principles" approach used to prove a Limit

theorem of the form X, =: X when X, E D8[Ooo),X E Cz{O,oo). One first shows that the

family {P, :n > 0) is tight, where P,(.) = P{X, E .), followed by proving that the finite-

dimensional distributions of X, converge to those of X. Because of the important role of

tightness in proving limit theorems in DE[O, oo), the characterization of the compact sets in

CE[0. C) and DE[O. oc) occupies a central place in the corresponding limit theory.

However, in many operations research settings, one can avoid the technical complica-

tions associated with the above "first-principles" argument by making use of the continuous

mapping principle. Suppose that one wishes to show that X, =, X and that one can rep-

resent X,,X as X = h(Yo), X = h(Y) for some function h such that P(Y E St} = i. Then,

the weak convergence of X. to X follows immediately if it is known (either by assumption

or by previously developed theory) that Y, =* Y. We will see this "continuous mapping"

approach illustrated in the queueing example developed in Section 5.

4. Donsker's Theorem

We shall now describe the most important functional limit theorem in the theory of

stochastic processes. Let {z, : n > 0} be an i.i.d. sequence of R-dvalued r.v.'s and set

S,, = Z, + ... + Z, with So = 0. Donsker's theorem is a limit theorem that describes the

behavior of the Rd-valued random walk {fS : n > 0) over long time intervals; this theorem

can be viewed as a "building block" for many of the other limit theorems developed in

probability theory.

We first review some of the classical limit theory for the random walk {S, n > 0). We

start with the strong law of large numbers, which states that if EIIZ,,Il < , then

(4.1) S P as.
n

as n - x. w1' p = EZ,,. The law of large numbers (4.1) can be refined by appealing tc

the central theorem. which asserts that if EfIZ, j  < 0c, then

4 2) n,/2 - /

10



where N(0, I) is an R'-valued multivariate normal r.v. with mean vector o and the identity

as covariance matrix, and E 1/ 2 is the square root of the covariance matrix E = EZ,'Z, -

EZI EZ,. (We assume here that Z, is a row vector.)

The idea is now to look for process-valued versions of (4.1) and (4.2). First, consider

.(t) = n-'StI, where (z] denotes the greatest integer less than or equal to z. It can be

shown that the limit theorem (4.1) implies that

(4.3) d(Y ,, ) - 0 as.

as n - , where X(t) = pt; (4.3) is called the functional strong law of large numbers.

To obtain a functional form of the central limit theorem, we use the same scaling as in

(4.2) and consider the stochastic process

X,(t) = ,1i/2 (-J _ )= n12(X,(t) - X(,)).

Note that one unit of time in the process X. corresponds to n time units of the random

walk, and that one spatial unit of X, 's equivalent to n1 / 2 spatial units of the random walk.

To identify the limit behavior of X,,, note that (4.2) proves that

(4.4) X"(t) ,_ E/ 2N(O, t . I)

for each t > o. Furthermore, the stationary independent increments of X, allows one to

extend (4.4) to the finite-dimensional distributions of X,: For 0 < tj < t2 < ... < t'.

(x,,(t),. ... Ix,,(4,))

.(x(.) ...... X(tm))

as n - o, where (X(ti),... ,X(t,)) is a Gaussian (i.e. multivariate normal) random vector

with mean and covariance described by

EX(t,)O, 1<i<m
(4.5)

EX'(t,)X(tj) = Erfn t, ).

The only process supported on DE(0, OC) with finite-dimensional distributions as described

by (4.5) is the $rownian motion process. Thus, if X E DE[0,oo), it must be that X - 1-'_B'

where B( ) is a standard Brownian motion process on Rd having the following properties

i I B(, EC PC){,

ii B( has stationary independent increments

11



ii)B t N(O, t. -).

The following result, known both as Donsker's theorem and the functional central limit

theorem (FCLT), is a precise statement of the limit behavior of the process {X, : n > 0}.

Theorem 4. If EIIZIl 2 < 0o, then X,, =, E/ 2B as n - oo in DE[0, 00).

We remark that Theorem 4 is the prototypical diffusion approximation. in that V12 B

is a diffusion process. (In fact, it is fair to say that B is the most fundamental diffusion

process.) Theorem 4 illustrates several important features that are common to diffusion

approximations. First, observe that the approximation suggested by the limit theorem

takes the form

S(,,] /t:Jnt + n/-lB(t)

Thus, the limit process that is used to approximate Sl,, depends on the random walk only

through the mean vector y = EZ, and the covariance matrix S of Z,,.

Secondly, a great deal of information about X, may be inferred from Theorem 4 by

taking advantage of the continuous mapping principle. We illustrate the power of this idea

by offering the following examples.

Example 2. Assume the random walk is real-valued (i.e. d = 1) with p = 0 and consider

the following functional of {S,, : n > 0} : max{Sb : 0 < k < n). We observe that this functional

may be expressed in terms of an appropriately chosen mapping h defined on X, namely

max{$S :0 < k < n} = n112h(X.)

where h(z) = max{z(t) :0 :_ t < 1}. By applying Proposition 4, it is easily verified that h

is continuous at any z e C[O, oo). Thus, since Brownian motion has continuous paths. we

conclude that P{X E St) = 1, where X = aB and 0 = v&rZ,. Hence, by Proposition 3 and

Theorem 4, h(X,) =* h(,B) and we obtain the approximatic

V' 1/2ma.x{S:0<k<n} A dn max{B(t):0<t <1}.

But by using the "reflection principle" (see KARLIN and TAYLOR (1975)), one can ex-

plicitly calculate the distribution of h(B). namely

(4 6) P{mm{Bit) 0< t< 1}>z}= V exp(-t0/2)dt.



Example 3. For the same random walk as in Example 2, consider #(k : 0 < k S n, S6 > 0).

Observe that

#{k: 0 < k < n,S > 0} = nh(X,)

where h(z) = fJl I(z(t) > 0)dt. Again, one can easily verify that P(B e Sk} = 1, by which we

may conclude that I(X,) =* h(aB) = h(B). Again, it is possible, using properties of Brownia.n

motion, to explicitly calculate the distribution of h(B):

P{h(B) _z}=-arcsinz1 /2, 0<z< .I

This limit theorem comprises the well known "arcsin law" for random walk.

Example 4. For the random walk {S,, n > 0) of Example 2, consider the hitting time
T(a) = min{k > 0: Sh > a},a > 0. To analyze the distribution of the hitting time, observe
that {T(a) > n} = {mx{S : 0 < k < n} < a}. Hence, {T(an l /2 ) > [zn]} = {mx{S& : 0 < k_< [nz]} <

an'/ 2 } and one can appeal to Example 2 to show that

P{T(an' / 2 ) > [zn]) - P{max{B(t) : 0 < t < z} <

which can be calculated from (4.6).

Example 5. This example will serve to illustrate the point made at the end of Section
3, namely that many functional limit theorems can be derived by judicious use of the
continuous mapping principle, thereby avoiding a "first principles" argument. For the

random walk of Example 2, set

_ S[,,] -S,, ,  <t<IS.t = 0, t > .-

Note that f(, = h(X,,), where h : Dv[0, oo) - DE[0, o) is given by h(z)(t) = z(t)-tz(i) for 0 < t < I

and h(z)(t) = 0 for t > i. It is easily verified, using Proposition 4, that h is continuous at any
x E CE 0,X), so that Proposition 2 allows us to conclude that h(X,) =* h(aB). We remark

that the process B(t) - tB(1)(0 < t < 1) is the so-called Brownian bridge process (also

known as "tied-down" Brownian motion).

An additional remark, related to Theorem 4. is in order. For an appropniately con-
tinuous h. the continuous mapping principle proves that h(X,) =. h(aB) as n - x.

13



way to calculate the distribution of h(oB) is to use this limit theorem to observe that the

limit random element h(,B) is invariant with respect to the particular choice of the random

walk {S, : n > 0). (modulo a,2 = vat Z,). Thus, one may calculate the distribution of h(,B)

,by choosing a particularly simple random walk (symmetric nearest neighbor random walk

on the integers is a typical choice), and taking the limit of h(X.) for the chosen random

walk. This approach to calculating the distribution of h(aB) explains why Theorem 4 is

often called the invariance principle.

A number of important extensions to the basic FCLT described by Theorem 4 have

been made over the years. The flavor of most of these extensions has been to prove limit

theorems for the partial sum process in which the summand sequence { - n > 0} is no

longer i.i.d., but instead allows for some kind of dependence and (possibly) some mild

form of non-stationarity. Sinre partial sum processes often serve as "inputs" to various

stochastic processes arising in operations research (e.g. if the Z,'s correspond to inter-

arrival times in a queue, the S,'s are the arrival times), we will now describe some of the

extensions that are available. We specialize to the setting in which the Z,'s are real-valued,

to avoid complications in stating results, but note that similar limit theorems hold in the

#O-valued vector context.

The generic form of the FCLT involves a statement that, for a given (real-valued)

sequence fZ, : n > 01, there exist finite constants J and a, such that

(4"' X, =* oB

in DE[0,00), where

X,(t) = n'/2 -

The extensions of the FCLT that are available include:

a) {Z. : n > 0) is a stationary mixing process. Here, {Z. : n > 0) is a strictly stationary

sequence which satisfies a mixing condition. Roughly speaking, a mixing hypothesis

states that events which occur at widely separated time points are asymptotically

independent of one another. This is generally stated mathematically as a condition of

the form

P{Zor E A. Z ,"+ E B} - P{Zg' E A}P{Zo E B)

as n - x, where Z' = (Z,, ... Z,) for , < j. Assuming that EZ4 < oc and '-a-

T**' :=cov(Zo.Z)I < c. the relevant FCLT's yield limit theorems of the form 4 7
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wherc u,u, are given by
p = EX,

a 2 = var ZO +2cov(Zo, Z).

For a more precise formulation of these results, see ETHIER and KURTZ (1986), p.

350-353.

b) {S. : n > 0) is a martingale sequence with stationary martingale differences. (See the

handbook chapter on martingales.) If {S,: n > 0) is a martingale sequence for which

the differences {D,, n > 1} (D, = S - S,,-,) are strictly stationary, then (4.7) holds if

ED,' < oo andg, a, are given by; = 0, ,2 = ED,2 .

c) {Z,, n > 01 is a regenerative sequence with regeneration times 0 < To < T, <. If

E(T - To) 2 < 00

1 
2

E i Z' I < 00,
\'=To

Z./FT. -T- Iri , '. (Z. - I))/ (T T)
then (4.7) is valid with u E Tf'' -/-T1 -TO) and 2=- ) /E(T"=-TTo

see GLYNN and WHITT (1987).

d) {Z, : n > 0) is a real-valuei functional of a time-homogeneous positive recurrent

Markov chain. Thus, Z, = f(W,) where {W, :n > 0) is a time-homogeneous Markov

chain satisfying a suitable recurrence condition; let r(.) be the associated stationary

distribution of {w, n > 01. We remark that there is no need here for W, to be discrete-

valued. Under certain regularity hypotheses (see NUMMELIN (1984) for a precise

description of the results), (4.7) holds with

A = Ef(W,)

"
7= E2(f(Wo) - S)

2 + 2 . (f(W) - u)(f(Wh) - p)
k=1

(E,(.) is the expectation on the path space of {W, :n > 0) under which W0 has distri-

bution r.)

The above FCLT's are an indication of the basic robustness of the Brownian motion ap-

proximation for the partial sum process. They indicate that, regardless of the fine strcture

of the summands. that partial sum processes over long time intervals behave (when suitably

normalized) like Brownian motions.



We conclude this section with the discussion of a very important and powerful theorem

which states, in a very strong sense, that random walk is well approximated by Brownian

motion. The type of theorem that we shall discuss here is called a strong approximation

theorem, since it is phrased not in a distributional sense (as in (4.7)) but in an "almost

sure" sense.

The following result, which is due to KOMLOS, MAJOR, and TUSNADY (1975). is a

particularly sharp form of the strong approximation theorem for random walk.

Theorem 5. Let {Z. : n > i) be a sequence of i.i.d. real-valued r.v.'s satisfying Eexp(aZ,) <

oo for a in an open neighborhood of zero. Set So = 0 and S. = Zi+.. *+Z, for n > I. Then there

exists a probability space (f,.YP) supporting a standard Brownian motion {B(t) t > oI

and a sequence {S,: n > 0} such that:

i) {S, : n > 0) 2 (S. : n > 0) (i.e. the sequence {S,) shares the same distribution as {S,)).

ii) For every z and n.

P ,max 1 -kp- oB(k))I> Clogn+z} <Ke-'

wherep = EZ,, o2 = vt Z_, and K, C, and A are positive constants depending only on

the distribution of Z,,.

It is easily verified (use the Borel-Cantelli lemma) that ii) implies that

(4.8) S, = np+ oB(n) + 0(log n)s.

(The sequence 0(logn) represents a sequence {R : n > 0) of r.v.'s such that 1R, 1 _ Alogn -. B

where A,B are fliite-valued r.v.'s.) This result is sharp, in the sense that if S, = np+ ,B(n)-

o(logn) a.s., then Z. has a N(p,a 2 ) distribution so that the o(logn) term can be taken to be

zero.

It is easily verified that (4.8) implies Theorem 4. Set

(n

and note that by i), XI2 X. By (4.8) and basic properties of Brownian motion.

(4.9) X'() - n- 1 2 oB(n )IIT = O(og n/nil 2) a.s.

for any T > 0. But n- ' 2 B(n) B( ). Hence. Theorem 4 follows from (4.9) by lettine ' -
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One important application of Theorem 5 is to (easily) obtain rates of convergence
for various limit theorems related to Donsker's theorem. Consider Example 2, in which

it is shown that-j(X,) =, h(,B) where h(z) = max{z(t) : 0 < t < 1). By i), h(X,) _ h(X,).

Straightforward analysis, using ii), then proves that

P{h(X,') _< z) = P{h(aB) _< z) + o (lo/g).

As in the case of Theorem 4, there exist extensions of strong approximation results to

dependent sequences; a good reference for such theorems is PHILIPP and STOUT (1975).

5. Weak Convergence Theorems for the Single-Server Queue

In this section, we indicate how the weak convergence theory of Sections 2 through

4 can be applied to obtain iinit theorems for the single-server queue. To be precise, we

consider a single GlI/G/1/oo queueing system in which customer 0 arrives at time To = 0.

finds a free server, and experiences a service time v0. The n'th customer arrives at time T,

and experiences a service time *;,. Setting U. = T, - T, 1 (n > 1), we assume that each of

the sequences {U,, : > 1} and {V,, : n > 0} are i.i.d. and independent of one another. The

three processes that we shall consider in this section are:

W, = waiting time (i.e. excluding service) of the nth customer

Q(t) = number of customers in the system (i.e. including the server) at time t

D(t) = the cumulative number of customers departing the system in (0, t].

Finally, let EU,, = -1 V,, = M,- 1, where 0 < A,p < o.

We shall first discuss the relevant theory when the traffic intensity p = A/p < 1. In this

"light traffic" setting, the queue is stable in the sense that {W. n > 0) and {Q(t) : t > 0}

are stochastically bounded. In fact, it can be shown that W, = W as n - oo, where the

characteristic function of W is given by

Eexp(itW) = exp =I n"[E(exp(itS,) - 1)]

and S., = -o - ,1 U, (n > 1) with So = 0 (S+ = max(S.,0)). Furthermore. if we

additionally assume that u, has a non-lattice distribution, then there exists a proper

r v. Q such that Q(t) = Q as t - x. Given the well-behaved nature of W, (and Q(t)). "t

is easy to show that there do not exist sequences {a,} and {b,} for whicri the ranaor,

functions {(Wj I -a.,t)/b.,} (and {(Q(nt) - a.,t)/b.,}) converge weakly to a non-degenerate
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process in DR[O,oo). This suggests that we should change our point of view, to consider

the cumulative processes

w-t and j0 Q(s)ds.
j--t

The analysis of these cumulative processes depends on the fact that both {wn : n > 0}

and {Q(t) : t > o} are regenerative; this allows us to apply the FCLT for regenerative

processes (discussed in Section 4) to obtain limit behavior for the cumulative processes.

To precisely state the relevant theorems, let ,v = inf(n > 1: W = 0) and let T = inf{t >

Qo : Q(t-) = 0, Q(t) = 1); 1? and T are regeneration times for {W. : n > 0) and {Q(t) t _ 0>

respectively.
n-: 2

Theorem 6. Suppose p < 1. If EU < x. EV02 < oo, Ei72 < , ET 2 < oc. E k < X.

and E (f r Q(s)ds)2 < :c, then

1/2 F ( V*-tEW) *u 1-B(t)

in D(O,oo) where 0, = E (Z"=(W, - EW))'/Eq and where a 22 E (for(Q(.) - EQ)ds) /ET.

Furthermore, EW = E 2"-' Wk/Eu, and EQ = E f07 Q(s)da/ET.

Recall that when p < 1, the translation constants EW and EQ appearing in Theorem

6 are related via Little's formula: EQ = AEW. A similar "Little-type" result holds for the

variance constants 1,2 and O2; for details, see GLYNN and WHITT (1986).

Turning now to the departure process, we observe that D(t) = N(t) - Q(t) where N(t) =

number of arrivals by time t. Note that N(t) is essentially the renewal process corresponding

to the sequence {U, : n > 1). To handle N(t), we use a basic idea from the theory of

weak convergence of stochastic processes, namely the method of "random time change".

Evidently, N(t), when viewed on the time scale of the T,'s, is deterministic, by which we

mean that N(T) = n + 1. Similarly, the sequence {T, : n > 0), when viewed through N Cs

time scale, is basically non-random, in that TN() - s. Thus, {T.} and {N(t)} are "inverse"

processes to one another. This important idea is central to the study of N(.).

To exploit these "time change" ideas in the weak convergence setting, observe that a

"time change" corresponds to composition of processes. Thinking of ,, as a change in ti.mrle

scale (i.e. from t to 0,t)). we need to consider when X, o 4, converges weakly to .x o 4
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In the following propositions, we endow the product space with the product metric

induced from the component spaces (i.e., a sequence converges in the product space if and

only if the components converge in their respective spaces).

Proposition 5. Suppose X. is E-valued and 4, : [O,oo) - (O,oo) is non-decreasing. If

(X,,4,) =* (X,O) in DE[O.oo) x D(O, oo) where (X,O) E Cc(0,oo) x CR, then X, a ,, =O X oo in

DE (0, o).

See BILLINGSLEY (1968), Section 17, for additional details. To establish the joint

convergence in Proposition 5, the following tool is often used.

Proposition 6. Suppose that X' E DEIO. ) and that there exists (deterministic) z' E

DEO(0. x) such that d(X , z') =* 0 in R. (This is equivalent to X", = z' in D,(0,=).) If X" =:, X

in DE[0, o), then (X,,,X') =b (X,z') in DE[0, oo) x DE,[0, oo).

To apply these results to N(.), one first generalizes the strong law for renewal processes

to a functional strong law:
N(nt)

ft

as n - x, for each T > 0. Since At is deterninistic, Proposition 6 and Donsker's theorem

for the inter-arrival times yields the weak convergence relation

(n'I/2 T.- A-', B( sAB )

where a' = var U,,; the random time change result provides

n1/2 (M3N(,)-A-I ) ,AB(A,).

Since TV(n.) f hs, one obtains the following FCLT for N(.):

(51)n1/2 ( N ( n o)  - AS)= o.aAA'/B(s)

(we've used the fact that B(o.) R_ a/c1 B()). To deal with the approximation T(.v,) ns. one

uses the following "converging-together" result.

Proposition 7. If X, =. X in DEIO. 3c) and d(X,,X,,) =, 0 in R, then X,, :: X in DE0, X'.

I For Propositions 6 and 7. we've implicitly assumed that Y,, and X, are defined on

the same probability space.) Propositions 5 through 7 follow directly from the Skoroirr."



representation and the fact that the Skorohod topology reduces to the topology of uniform

convergence when the limit elements are continuous. The ideas exploited above, namely

those of "continuous mapping", "random time change", and "convergence together", are

jthe three main tools used in proving most of the diffusion approximations that arise in

operations research. The limit theorem (5.1) is a particularly simple application of these

ideas, but is nevertheless somewhat typical of how diffusion approximation limit theorems

are proved in operations research.

We return now to the departure process D(t). Since the queue-length process Q(.) is

stochastically bounded, the next result follows from (5.1) and the "converging together-

proposition.

Theorem 7. Suppose p < 1 and EUL < =. Then,

n1/2 (D(nt) At) 7A A3/B(t)
n /

in DR[O, o).

This concludes our discussion of the stable case in which p < 1; we turn now to analysis

of the unstable GI/GII/l queue, in which the traffic intensity p > 1. The crucial point

here is that when a queue is oversaturated, there exists some (random) time s after which

the server is never idle. One now observes that if S(t) is the renewal counting process

corresponding to the service times V0, V1 ,..., then S(t) can be interpreted as the total number

of customers that would exit by t if the server were in constant operation. Thus, D(t) 2 S(t)

and Q(t) f N(t) - S(t), from which the next result follows (use (5.1) and the independence

of N(.),S(.)).

Theorem 8. Suppose p > 1 and EUI < oo, EV, < oo. Then
1/2 (D(-) _-j =:) ,sp 3/ 2 (t)

n 1/2 (q t )_ (A- M)t) =, (o2A 3 +0 j.4
3 )1/2B(t)

in DR[O. x), where q2 = var

An immediate consequence of Theorem 8 is the following -pplication of the continuous

mapping principle: if a2 .C >0. then

P{Q(n) < n(A - 1) + n/ 2(o2A 3 +

- f exp(-t 2 /2)di.
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as n - 0. To handle the waiting times, we use the fact that the waiting time sequence

W, : n > 0) satisfies the recursion W, 4 = [W,, + X.,] (with Wo = 0), where X. = V, , - U.,.

Since the systera is oversaturated, W,, - :o a.s. and is hence positive with high probability

for large n. Thus, W.,. v w. + X.,+ (i.e. the positive part operator can be dropped). This

implies that W, , : S,, 1 ,when S,, = X, +. + x,,n,. A limit theorem for W,, can then be

obtained from the FCLT for S,,.

Theorem 9. Suppose p > I and EU2 < w, EV2< oo. Then

, 1/2 (1 .. n ( - -)) =  (0,2 + 0,2 )1/2 ,

in DR[O. =c).

We now describe the approximation theorems that are available in the setting of -heavy

traffic", where p = 1. Returning to the waiting time sequence {W. : n > 0), the recursion for

the W,'s can be solved to yield W, = S, - rmn{S, : 0 < k < n), from which it follows that

= 1 - mint s,: 0 <S <t

when X,,(t) = S[,,]/nI1 2 and f' DR[O. x) - Dj[0, oc) is given by

(5.2) f(z)(t) = z(t) - min{z(s): 0 <a < (t}.

By Donsker's theorem, S, , (V2 + g2)
1 /2B. On the other hand, it is easily verified that

f is continuous in the Skorohod topology at any continuous function z E CR[0. xc), so the

continuous mapping principle yields the following theorem.

Theorem 10. Suppose p = 1 and EU, < oc. EV < o. Then

/2 l*, =0 (a2 + 2)1/2f(B)(t) in DR(O,oo)

The mapping f appearing in (5.2) is called a "reflection mapping"; such mappings arise

naturally in the analysis of queues in heavy traffic. Thus, the following result for Q(t) D(t

should not come as a surprise.

Theorem 11. Suppose p = I and EUn2 < x. EVn2 < :c. Then

n/2 (D-nl - At') g(A 3 B, d BA3 . B2 )(t)

n A1



in Ds(O, ac), where B1,B1 are independent real-valued standard Brownian motions and
Dp,[O. =c) - Dj[O. ) is defined by g(z.y)(t) = y(t) - inffz(s) - y(s) 0 < s < t}.

To use the above approximations. one needs to study the di;stribution of the "'reflected"

process f(8). (Such processes are also known as "regulated Brownian motion.") It cant

be shown that 1(B) -R 181 so that the continuous mapping principle yields results of the
following kind: if ,, aj > 0 and p= 1. then

P W,,> Z(0 '. &:)/ n/2 2} - P{cB()I > z = fjexp(-t2/2)dt

,max Q(t) < 3 '' 2zn2/2

P rnaxIB(tj - z- - exp (- [r (2k + 2)k/8Z}

8s n -

The question also arises as to whether Theorems 10 and 11 are true diffusion ap-

proximations. in the sense that the limit processes are diffusions. In particular, is 1t 3 a
diffusion process? The path continuity of 1(B) is obvious. To see that f(B) has the Markov

property, one notes that if z(O) = 0. then f(:) = 1(z) where

f(z)() = z(t) - rmnn{z(j) A 0 : 0 <i S< t}

Since B(0) = O,1(B) =(5). Frthermore, if t > u. then j(z)() = (9.z)(t - u) where (uz),sl =

z(s + u) - z(o) + i(s)(s). Thus, the distribution of f(B)(t), conditional on f(B)(a) for 3 < u. :s
identical to the distribution of f(z + B)(t - u) where z = j(B)(u) (the independent increme'.ts

property of B was used here). Thus, the reflection functional I preserves the Markov

property in this setting.

We turn now to the statement of certain variants of the above heavy traffic results.
which hold for stable and unstable queues in which p ;a i. The idea here is to consicier a

sequence of GI/G/1/x queueing systems in which the arrival and service distributiors .-a7.

with the queue. Suppose that in the n'th system. the inter-arival and service tirne "

aze given by the sequences {t', ; 1 } and 0),, ) > O} Set Ai = EL , = EV..
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var U, ,2. -var V , and assume that 0 < A;', p; < o. We further require that:

i) A. -A, 0<A<0

ii) -A, >

iii) -P, 0<M<oo

iv) u j > 0

v) there exists e > 0 such that
supEr (IU,, 12 ' + IV,,I2) <00

n>o

(5.3) vi) n( 2 (A, - - C, -00 < < 00.

Just as in the case of the ordinary central limit theorem for r.v.'s, there exists a version of

Donsker's theorem that governs doubly indexed families of r.v.'s (see PROHOROV (1956)1.

To be precise, let e :[0 c) - R be given by e(t) = t and consider

Then, X,, =* 'AB in DO0, o); a similar FCLT ho!ds for the service times. By applying

continuous mapping ideas similar to those used in the p = I setting, we obtain the following

limit theorem. (W n , Q"(), D() are the waiting time, queue-length, and departure processes

associated with the n'th queue).

Theorem 12. Assume (5.3) i)-vi).

a) If -x < c < oc, then

n 1 (nt) =D ((3, + IA3 0, ) 1 B + ce)(t)
n1/2 (D(nt) ,.t) =o 9(A 32 BB +ce, 3 43 )(t)

in DR[O, oo), where B1 , 82 are independent standard Brownian motions.

b) If c= o, then

(A , A A a32 sB(I)1/2 s ( t ) P ( 3 2~ +s BA~t)' 1 B

in D#R[0, x).

c) If c = -x. then
t-/23Q"(nt)

n2 ( D '  
_~

n  A".) k3/ 2CAB(t)
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in DA[0, oo)

A similar result holds for the waiting times.

Theorem 13. Assume (5.3) i)-v) and replace vi) by nv/I2(p; - A-') - c, -o < c < . Then

*-n,] f((OA + o, 2 B + ce)(t) if - <C < 0o

n-i/2 -(is'- A')i (y +01)'/ 2 B() if c==

n-/ 2 W' , *0 if c = -oo.

For further details on the above heavy-traffic limit theorems in which p n 1, see IGL-

HART and WHITT (1970 a.b). To fully utilize the above approximations. one needs to be

able to analyze the resulting limit processes. One complication that arises in the setting

of Theorems 12 and 13 is that. unlike the p = I situation in which f(B) 2= JBI, it is not true

that f(aB + ce) 2 laB + cel. However, it turns out that one can develop, using methods to

be discussed in Section 6, an analytical theory for the process f(aB + ce); this process is

known as reflected (or regulated) Brownian motion with drift c and variance parameter a.

Among the results available is the distribution of f(aB + ce): for a > 0,

(5.4) P{ff(aB + ce)(t) exp(2cz/a 2 ) X

where O(z) = (2r) - 1/2 f-. exp(-t 2/2)di is the standard normal distribution function. We will

now illustrate the application of this result to a GI/G/I/oo queueing system.

Example 6. Consider the analysis of {W,, : n 01 for a GI/G/1/oo queue in which A

Suppose that we wish to study the distribution of W., for n large, using (5.4). The idea is

to set a2 = OT, + d2,c = nl/ 2(p - - -). Then, Theorem 13 yields

(5.5) P{W,, < z" 21 P{f((o' + c.)1 12 8 + zn'
1

2
2(W- - A-2)].)(a) _ .

or. more descriptively,

2: n + a( + 11B'02)/2B 0 [n7/(MI - A- )]e)( 1).

Note that the right-hand side of (5.5) can be evaluated using (5.4).

In Example 6, observe that if c = n/2'-1 - A-') is a large negative (large pof-.':."

number (this occurs if n is large relative to (p - A )), the approximation (5.5' :s :
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since the r.v. f(aB + ce)(1) is then essentially a point mass at zero (infinity). Better

approximations are available if c_ = n'/1(, "  - A- ') is large, however. Relation (5.5) says

that W./n'1 2 a J(aB + ce)(1). Proceeding formally, this suggests that

(p- ' - A-')W. = cW,/n;'1 7 c.f(aB + c ,e)(I).

But the r.v. c, f(aB + c,e)(t) is equivalent to

f(acB + cne)(1) = f(aB(c4 ) + e(c2.))(1) = f(aB + e)(.)

(the first equality relies on the scaling behavior of Brownian motion: -tB(-) = B(- 2 )). Note

that if (- -A - ) is negative and c,, is large, this argument yields the approximation
-1 -A- IW, f (aB-e)(x). Turning to (5.4) and letting t - oo it turns out that f(*B-e)(t >

02 exp(1)/2 as t - oo, where exp(1) is an exponential r.v. with parameter one. Thus. we

approximate '- 1 - A-W,, via 02 exp(l)/2. If, on the other hand, ("-I - A-') is positive and

c,, is large, lp-' - A-' W, - f (B + e)(c!). Because of the positive drift of aB + ef(aB --

e)(d) (aB + e)(c!) = c, (B(1) + cne)(1) i.e. Wn/n 1/ 2 - c,,e(1) = n'l 2 (W./n - (jC 1 - A-,)) a B(1).

We summarize the above discussion with the following table of approximations:

Parameter Region Approximating Distribution
for W,,

(- A) small
exp(1)

ni/2(U - 1 - A- 1) large and negative

ni large, (I,-' - A-') small,
n1/2f((o,2 + OP2)'/ 2B + f(p- - A-')/ 2]e)(I)

n' 2(p - l -A-') small to moderate

( - A - ') sm a l-
n1/- A- ) + nl1() +.- S) 2B(1)

- A-') large and positive

Except for the topmost entry in the table, the approximating distributions cited above

are given by Theorem 13. For the entry concerning the situation in which n/2(,- -

is large and negative, PROHOROV (1963) proved the appropriate result (see KINGMAN

1961) for a related theorem).
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Theorem 14. Assume (5.3) i)-v) and suppose that n'/ 2(,M'- A')- -x. Then

1,;' - A; IW. *: (,'A + a,')exp(l)/2 as n - o.

Theorem 14 suggests that as P / 1. EW, - A(al + C)/2(l-p) where W, is the steady-state

waiting time associated with the p'th queue. In fact, this heavy-traffic approximation is

an upper bound on EW for all p; see MARSHALL (1968).

Theorem 15. In a Gl/G/I/oo queue with p < 1, EW < A(oj + uJ)/2(I - p).

To conclude this section, we note that further details on the structure of reflected

Brownian motion f(aB + ce) may be found in ABATE and WHITT (1987a,b). It also turns

out that the results of this section are valid under much more general hypotheses than

those stated above. In particular, the results hold even when the inter-arrival and service

time sequences are dependent. This is important, since typically the arrival stream to a

queue is the superposition of departure processes from other queues; such an arrival stream

yields dependent inter-arrival times. To deal with dependent sequences, it is enough to

observe that the above results essentially require only that the arrival and service streams

satisfy a joint FCLT: There exists A-', p- and _ such that

(5.6) n,"2  - W _,_ 1 v, - t- E/ B(t)
1=/

in DB:[O,=o). Using (5.6), analogues to Theorems 7, 8, 9, 10, and 11 may be obtained.

Analogues to Theorems 12, 13, and 14 depend on assuming a double-indexed version of

(5.6).

Finally, ROSENKRANTZ (1978) has studied the question of how rapidly the distri-

bution of w,,/n / 2 converges to that of reflected Brownian motion, when the queue is in

heavy-traffic (p = 1). By using the strong approximation theorem of Section 4, he shows

that the rate is O(Iogn/nl/ 2 ).

6. Background on Diffusion Processes

In this section. we briefly describe several important elements of the general theory for

diffusion processes. We are particularly interested here in describing how the theory of di-

fusion processes is intimately connected to the study of certain partial differential equatiors

(PDE's). It is that connection to PDE's that makes diffusion processes computatior.al-.-

and analytically attractive.
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To develop the connection with PDE's, we review briefly the different modeling ap-

proaches that give rise to diffusion processes:

1.) A diffusion process may be directly postulated as an appropriate model (e.g. Brownian

motion as a model of molecular motion).

2.) A diffusion process may arise as a limit occurring in the study of a stochastic model

(e.g. reflected Brownian motion arises as a limit in the study of queues in heavy traffic).

3.) One may postulate that the stochastic process X driving a model has certain in-

finitesimal characteristics. Specifically, if X is Rd-valued, one specifies functions p

- R, 72 :Rd _ R- X d called the infinitesimal drift and infinitesimal covari-

ance functions, respectively. These functions u, a2 are related to X by requiring that

E{X(t + h)IX(u) : u < t} = u(X(t))h + o(h),cov{X(t + h)IX(u) :u < t} = ,2(X(t))h + o(h). If

0
2 (.) is positive definite and X is additionally postulated to be Markov with continuous

paths, then the resulting process (if it exists) must be a diffusion process.

Much of the theory of diffusion processes concerns mathematical difficulties that arise when

a diffusion process is postulated as in 3.) above. More precisely, given p and al2, does there

exist a unique diffusion process X (unique in distribution) for.which E{X(t + h)IX(u)u <

t) = ,(X(t))h + o(h),cov{X(t + h)IX(u) : u < t} = a2(X(t))h + o(h)? To answer this question.

suppose there exists such a process X. If f is sufficiently smooth,

E.f(X(h)) -E. f(Z) + E (z)(X 1  + 2f! ()(X,(h) -z,)(X(h) -zj)

where is on the line segment joining z and X(h). Using the infinitesimal characteristics.

the above Taylor expansion yields

(6.1) Ef(X(h)) = f(z) + (Lf)(z)h + o(h)

where

(Lf)(z) = W 1 a'; !
1=1 zj=j

This expansion holds for a large class of f's. call it P(L). One can state (6.1) differently

Let P,(z.d y) = P,{X(t) E dy} be the transition measure for X. Then. (6.1) asserts that

(6.2) h-V [Phz.dy)f) -f(z)] - (Lf)(z)
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as h 0 O, provided f E D(L). Of course, the family (P, :t > o) must have the semigroup

property

(6.3) P+,(z, A) = P,(z, dy)P.(y,A)

and it must be stochastic: P, ? 0, P,(z. J) = 1. An extensive theory has been developed to

determine when there exists a stochastic sermigroup satisfying (6.2), for a given L and D(L).

(A principal result here is the Hille-Yosida theorem; see KARLIN and TAYLOR (1981)). A

positive answer to this question generally guarantees the existence of a diffusion X having

infinitesimals p and a2. (One also needs to check that a version of X can be constructed

with continuous paths, and thus existence of (P,) may not be quite enough to guarantee

existence of a diffusion.)

Suppose now that we are given that a diffusion X exists, described by L and D(L). The

operator L is called the infinitesimal generator of X and D(L) is called the domain of

the generator. We shall now describe some of the problems related to X that may be

found by solving PDE's involving L.

Problem 1. Let x be a real-valued diffusion. Let T(a) = inf{t > 0 : X(t) = a1 be the

first time that X takes on the value a. For fixed levels a and b(a < b), let u(z) = Pf{T(a) <

T(b)}(a < z < b) be the probability that X hits level b before hitting level a. Then. urr(L)

and u satisfies the differential equation

Lu = 0,

subject to the (obvious) boundary conditions u(a) = I, u(b) = 0.

Example 6. If X is a one-dimensional standard Brownian motion, it is easily verified from

the stationary independent increments of X that p(z) = 0 and a,2(z) = 1. The domain D(L)

consists of all bounded functions f : R - R having a bounded continuous second derivative.

The solution to the differential equation

I d2

7 -U(z) = 0

subject to u(a) = 1. u(b) = 0 is the affine function u(z) = (b - z)/(b - a).

Problem 2. Let z be an interior point of a set .4 with a "nice" boundary and assume that

Pv{T(.4) < x) = I for all y E .4. where T(.41) = inf{T > 0 X(t) E A ). For given reai-val,.';.l
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functions # and k, set w(z) = E. ffo(Ag)exp(- fOk(X(r))dr),(X(9))cf}. Then, wo satisfies the

PDE

(Lw)(.) - k(.)w(.) = -g(.) in A

subject to tw E V(L) and w(y) = 0 on the boundary of A.

Example 6 (continued). Let k = 0 and g = I in Problem 2, so that w(z) = ET(AC) is the

expected amount of time required for the diffusion X to "escape" from the set A. If X is a

one-dimensional standard Brownian motion and A = [a, bj, then w is obtained by solving

subject to w(a) = u(b) = 0. The solution is u, lz) = (z - a)(b - z).

Problem 3. For a given real-valued g, set u(t. z) = E.g(X(t)). Then, u satisfies

(6.4) U(t.r ) d 1 2 ,z

subject to u(t, .) E D(L)( and u(0,.) : g(.); in short-hand, (6.4) is written u = Lu. Equation

(6.4) is called the backward equation for X, and is fundamental to the study of diffusion

processes. Assume that P(t, z, dy) has a density p(t,z,y) with respect to Lebesgue measure

dy. By formally setting g(.) = 6y()(6,(-) is the Dirac delta function), (6.4) yields an equation

for the transition density p:

(6.5) 5ip(t,zy) = W'yzp(t, , ) + 2,(-)

subject to p(t., y) E V(L) and p(O,, y) = b,(-); the partial differential equation (6.5) can be

re-written in the more convenient shorthand notation

a
-p = Lp.

If X is a process that lives on all of R1 (so that X has no non-trivial "boundary behavior"

one can obtain the "adjoint" equation to (6.3):

49d d 892 (~(~~z
(6.6) 8 ( z, Y) = - ,= -(,()p{ .z. Y)) + (0,2 (y) t,Zy))

subject to p(. z.) = t:(): (6.6) is the forward equation for the density p. The adjoin:

equation can be derived by viewing the -backwards operator" L as an operator on an-
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appropriately chosen space of smooth functions, and performing an "integration by parts"

to obtain the adjoint (or forward) operator L.

Example 7. Let x be a real-valued diffusion process for which (z) = -pz and a,(z) = 1:

this is a special case of a one dimensional Ornstein-Uhlenbeck process. (Note that if

p= 0, X is a standard Brownian motion.) Then, the backwards equation for the transition

density p takes the form
Op 1 02p Op
0* 28_2  09Z

subject to p(0,z,y) = 6,(z). On the other hand, the forward equation is given by

ap I a2p a

subject to p(Oz,y) = 6(z). If 1, = 0, the (common) solution p is given by

p(tZ, Y) = P(t,zy)

where o is the Gaussian kernel

o(t, z, yt) = (2rt) - t1/ exp(-(y - z)2/2t)

t > 0). However, if A # 0, the solution p takes the form

p(t, Z, Y) = ( 1 - e-2",),Ze', ).

Problem 4. For a real-valued g and a non-negative function k, consider the expectation

w(t, z) = E, {exp (- jk(X(s))ds) g(X(,))}.

Then, under suitable regularity conditions on X, g, and k, it can be shown that w solves

the PDE

W = Lw - kw,

subject to ,(t. )cP(L) and w(0,) = g().

Example 6 (continued). Let X be a one-dimensional standard Brownian motion and

suppose that k(z) = a and g(z) = z. Then.
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'(t~z) ze - *'

solves Problem 4

Problem 5. Suppose that g is a real-valued function. If we view g(z) as the rate at which

cost accumulates in state z, then 00
u(z) = E, j e-'g(X(t))dt

is the a-discounted cost associated with starting the diffusion X in state z. Under suitable

regularity conditions, one can show that ucV(L) and satisfies

au - Lu = g.

Example 6 (continued). If X is a one-dimensional standard Brownian motion and a > 0.

then the solution u to Problem 5 is given by

U(Z) = _, exp (-vilz - yi) g(y)dy

(provided the integral exists and is finite).

Problem 6. Suppose that X is positive recurrent so that a density p(.) exists such that

p(t, z, y) - p(s) as t - oo for each z. This type of limit behavior suggests that Op(t, z, y)/t - 0

as t - oc; formal substitution in (6.6) yields

(6.7) -1o h a( ) 0

subject to f p(v)du = 1; (6.7) can be solved to obtain the steady-state density of X. (We

caution that if X has non-trivial boundary behavior (e.g. reflection), additional boundary

conditions must be prescribed.) Typically, the process X becomes a stationary process

when initialized according to the density p. Hence, p is often termed a stationary density

for X.

Example 7 (continued). Suppose that X is a one-dimensional Ornstein-Uhlenbeck process

with u(z) = -,m and al(z = i. Then. the stationary density p must satisfy

Id 2  d
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* ~ ~ ~ ~ A is~~s o t its given by

Aa.~B aeww~U"tg MMAen the analytical thomy for diffusion is given in KARLI

1* p ~.I~oM eserchappaicatiom, dgIaom a*e not obtaine via an imfinitesimal

WNAlstiag- he pfoesss rather, as ill~stratd in Section 5.they wre usually obtained
as link eiuta efntoalc rwinmto.I Mretoran the PDE's cited
AbM%. ose beeds to:'clcmlate 1, ffr such processes. We mw indicate hiw to do this for
* rdse~Um nis otion I(esl + 1*);r the tool used it,0howvet quite gener-al.

. Lt X be,:. a eketed Bmronian mnotion starting at a 1- 0. Then, for t a 0, X(t)

+ 8 B~+ca() wher I()(t) (I) -maa(s) A0: 0:S:cg}. Hence, We May represent X as
XW )+ * () V -Q ), where V() i{(a(. () + ) A 0 :5 *( ). The process Vhas
two iEbrant cbawhmteristics. Fwstly, V is non-decreaming;- hence, it may be used as Ad
intepliaor. econdly, the point, of increase occur anly at those t for which xQt) vanishes
(i.e., 9~ 0(~ )OVd. B.

We are uoing to use 1t0's fomula (see the Marw pic chapter of this handbook) to
dtfiv the badkwd equation fo the diffauion X, osie am~ fct*io 8(,) on 10, 71,x [P, m
which is twice, COntinuousy difrnibo t oan ewl py 16t orMUla
416 this ptues VOXQ)) whe r a'Q) - ~ t-s) oeta the, stochas& differnilo
the prom botXQ)) is given by

dv~,X~)) (tX(t))& + g3 Q1 XQf))dX(d)

+ Y'r X(t)xdx(t))2.

ClearlyO jXit aed() +eA -dV(). On the other hand, the 1t6 calculus asserts that
(dX(I))S 2 *2 ..

daQ, X(t)) a {(tX(f)) + Ci &___.Xt) Y M

+ (t, XQt))dB(I) (S. X(t))dVI).

Suppose now that we choose the function w9 so that the bracketed term in (8.8) disap-
pears, i.e., choose qjto satisf the PDE

(69 2 a52
Z7(ttz) a= c~(t. ) + 1(,Z
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We can simplify (6.8) further by observing that since V increases only when X is zero, we

have

(6.10) L(t,x(t))dV(9) = V(t,o) . dr(t).

Hence, (6.10) vanishes if we require that , satisfy the boundary condition

(S~ll) -170 (, 0) = 0.

We may therefore conclude that if 7 satisfies (6.9) and (6.11), then

dv(t, X(t)) = a -(t, X(t))dB(t)

and thus T
v(T. X(T)) - v(O. X(0)) - c, -(t, X(t))dB(t).

But the right-hand side is a martingale (see the Markov process chapter of this handbook)

so we conclude that

Ev(T, X(T)) " v(0, z)

i.e.,

E.r(0, X(T)) =(T, z)

If we set g(z) = 17(0,z), we find that ,7(T;z) = E.g(X(T)), provided that 17 satisfies (6.9) and
(6.11).

A glance at (6.4) shows that j is the solution to the backwards equation corresponding

to the diffusion X = f (&B + ce). Thus, the infinitesimal generator L of X is given by the

second-order differential operator

Sa2 L2
L = + -8:2

the domain D(L) of the reflected Brownian motion X includes bounded functions h that

possess a bounded continuous second derivative and satisfy 8/8z h(0) = 0.

Hence, It6's formula can be applied to determine both the infinitesimal generator and

the "boundary conditions" that characterize a diffusion process.

7. Diffusion Approximations for an Open Network of Queues in Heavy Traffic

In Section 5. we showed how a single-server queue in heavy traffic can be approximated

by a one-dimensional reflecting Brownian motion. In this section, we discuss how
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approximate an open network of d queueing stations in heavy traffic by a d-dimensional

diffusion process.

Consider a network of d queueing stations. Each of the d stations consists of a single

work-conserving server that serves customers in the order in which they arrive. By work

conserving, we mean that the server never goes idle when facing customers in its queue. We

assume that the customer routing within the network is Markovian. Let P be the routing

matrix for the network (i.e., P0* represents the probability that a customer completing

service at station i goes immediately to station j; I - ',,l Pj is the probability that a

customer released from station i leaves the network). To simplify our following discussion.

we assume that P, = 0 for I < i < d. We further require that P be irreducible and that

(I - P)-I exist (i.e., P is substochastic).

Let U, = { :(m) m> 1} be the sequence of exogenous customer arrivals to the i'th

station; the U,(m)'s are assumed to be i.i.d. with mean I/A, and (finite) coefficient of

variation a, (i.e., varU,(m) = , 'a2). For 1 < i < d, let vi = {V,(m) : m > 1 be a sequence

of i.i.d. unit mean r.v.'s for which b, = r vt (m) < oo; the r.v. V(m) can be viewed as the

service requirement of the m'th customer to be served at station i. If Ai(n) is the service

rate at the j'th station in the n'th approximating network, then V,(m)/ij(n) is the actual

duration of service for the m'th customer at the i'th station in the n'th network.

Let Q,,(0) be a random d-vector having non-negative integer-valued components. The

i'th component is to be interpreted as the number of customers that are sitting in the

queue of the i'th station waiting to be served at time t = 0 (in the n'th system).

We require that the 2d inter-arrival and service requirement sequences, as well as the

customer routing dynamics and Q,(O), be mutually independent. Such a queueing network

as we have described is termed a generalized Jackson network. (Note that if the U(m)'s

and V,(m)'s are exponential r.v.'s, we obtain a standard Jackson network.)

The theory of weak convergence for queueing networks is largely based on the devel-

opment of convenient representations for the corresponding queue-length processes. By"

applying the continuous mapping principle, random time change theory, and converging-

together techniques to the representation. one arrives at a diffusion limit for the network.

To describe the representation that is useful here, we let

.4,(f) = max {m>O ZU, t}
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be the process which counts the number of exogenous arrivals to the 'th station over the

interval [0, t]. We further let

C,(t) = max {M > 0: V,(j) 5

note that C,.(t) = C,(p,(n)t) is a process which counts the number of customers served at

the 'th station during the first t units of busy time (in the n'th network). Let Q(t) =

(QRI(t)..... OQ,(t)) be the vector queue-length process in which Q.,(t) represents the number

of customers at the 'th station at time t in the n'th approximating network. Note that

(7.1) B,,(t) - I(Q.,(j) > O)da

is the amount of time that the i'th station is busy over [0,t]. Then, C,,,(B,(t)) is the total

number of customers served at the i'th station (in the n'th system) over [0,t].

Suppose that R,(m) is a random vector which routes the m'th customer completing

service at the i'th station. More precisely, R,(m) = ej (e, is the j'th unit vector) if and

only if the m'th customer to be served at the i'th station is routed immediately, upon

completing service at station i. to station j. Then,

is a vector in which the k'th component equals the number of customers routed from

station i to k over [0,t]. Let C,,(B,(1)) = (C,,(BlI(t)),CR$(R 2(t).. C(B.d(1)) and A(t) =

(Aj(t) .Ad(t)). Clearly,

,d .,(B.,(0)

(7.2) Q.(t) = Q.(O) + A(t) + _ _ (j) - C.(B.(t))

By arguing path-by-path, it is straightforward to show that the queue-length process Q.

(together with the busy time processes B,,,..., B.d) is the unique solution of the coupled

system (7.1)-(7.2). However, we shall shortly describe an alternative representation for Q,

that is more convenient in terms of implementing weak convergence arguments of the type

mentioned earlier in this chapter.

Before proceeding further. we need to derive conditions on the network which force

each of the stations into heavy traffic. We let A = (..... A) be the vector of exogenous

arrival rates and wn = p I (n). .P(n)) be the vector of service rates. Then, A'I - -
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the vector of "effective arrival rates", in which the i'th component is the rate at which

customers arrive to station i (from both within and outside the network). Suppose that

(7.3) n"'2 (m(n) - p') - c

as n - oo, where the vector jA is such that u, = (A(I- P)-), for I < i < d. Hence, each station

is effectively experiencing a traffic intensity of 1, and is therefore in heavy traffic.

The alternative representation for Q. is obtained by first centering the cumulative

processes appearing in (7.2). The centering constants are suggested by (7.3) and the

following FCLT's:

(7.4) n 1/2 (.,.t)n At) = Bl.(A,alt)

(7.5) i/ 2  ( )- , B2,(b(t)

where A, = (A,(,k) 1 < j,k < d) and A, (,k) -PP,1 (j # k) and A,(j,j) = P,(1 - P,). FCLT's

(7.4) and (7.5) are just the FCLT's for renewal processes described in Section 5. whereas

(7.6) is the multivariate version of Donsker's theorem. Let (1A(n)B,,)(t) = (p1(n)B, 1(t).

p(n)B.4(t)). Then,

(7 .7) Q.Md) = Z,(t) + Y(O( - P)

where
Z.(t) = Q. (0) + (,A + u(n)P - p())t + .(t)

rd C..(B..()
t,,(t) = (A(t) - A, I + R.(k) - C,(B.(t))P

L'=1 =1

+ [C, (B,(t))P - (p(n)B,)(t)P]

- [C,,(B,,(t)) - (u(n)B,)(t)I

Y.,(t) = lan)t -

It turns out that the process V,, appearing in (7.7) has the following properties:
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(7.8)

i) Y, is non-decreasing (component-by-component) with Y,(0) = 0,

ii) Y,1 (t) increases only at times t for which Q,(t) = 0 (i.e., fo I(Q.,,(t) > o)Yj (dt) = 0).

Furthermore, the pair of processes (Q,,B,,) satisfies (7.1)-(7.2) if and only if (Q.,Y')

satisfies (7.7)-(7.8). Hence, we may view (7.7)-(7.8) as an alternative characterization of

Qn.

Let Do [0,oo) = {zeDd(0,[Oo): z(0) _ 01. Then, given zeDOd[0, oo), there exists a unique y

such that:

(7.9)

i) q = z + y(I - P)

ii) y is non-decreasing with y(0 ) = 0

iii) y, increases only at times 9 when q,(t) = 0, 1 < j < d.

Since y is uniquely defined (for each :), we may write y = h(z). If we let f(z) =+ h(z)( -

P), we can rewrite (7.7)-(7.8) as asserting that Q,, = f(Z,). The representation Q, = f(Z,)

plays a central role in the heavy traffic analysis of open networks. The function h is known

as the regulator map and f(z) is termed the regulated version of z. These mappings

were first studied in HARRISON and REIMAN (1981). The function h has the following

properties:

(7-10)

i) The function I is (suitably) continuous,

ii) For every t > 0, the restriction of f(z) to [0,t] depends only on the restriction of Z to

[0, t],

iii) Let T > 0. Define i(t) = q(T) + z(T + t) - z(T), f(z)(t) = f(z(T + t)). Then, 1(z) = f ().

Given (7.10)i, weak convergence results for Q, can be obtained by suitably approx-

imating Z,. An important (and typically difficult) step in dealing with Z, is to show

that

(7.11) B, (n 0
n

in Dpr0. x) as n - oc (i.e.. each server is asympotically busy 1007c of the time). Wi'h

i.11) in hand. (7.4)-(7.6), in conjunction with a random time change argument, pernr.'1
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one to show that if there exists Q(O) such that

(7.12) n - 112Q(o) = Q(),

then

(7.13) Z"(t) A- n-1 /2 Z,,,(nt) = Q(O) +c(i - P)t + r1/"2 B(t)

as n - o. The process B appearing in (7.13) is a d-dimensional standard Brownian motion

and the covariance matrix r is given by
d

(7.14) r,= ,j'+ A, a'l]6, - I~~kt'bPk + EPP1j - Pi,~ + bi&
1=1

By applying the continuous mapping principle to the function f and the process Z". one

obtains the following diffusion approximation for open queueing networks in heavy traffic:

see REIMAN (1984) and CHEN and MANDELBAUM (1988) for further details.

Theorem 16. Assume (7.3) and (7.12). Let Q"(t) -; Q,,(nt)/v' and set Z(t) = Q(O) + c(I -

P)t + r 1/2B(t). Then

Qn = f(Z) =. f(Z) = Q

in Dad[0, o ), as n-.

To use the approximation suggested by Theorem 16 in a practical setting, we need

a queueing network in which each station is in heavy traffic. By this, we mean that the

difference I(A(I - P)-i),/p - ii ought to be of order c for some small c (I < i < d). (Think of

E as n - 1/ 2 in our limit theorem.) Then, the diffusion limit Q describes the fluctuations of

order 1/c experienced by the queueing network over time scales of order 1/02.

As in Section 5, the reflected Brownian motion Q (also known as regulated Brownian

motion) turns out to be a diffusion process. This basically is a consequence of properties

(7.10)i-ii of the map f, together with the independent increments of B. The term reflection

is used because the process Q can be viewed as "reflecting" in the direction of the ,'th row

of I - P whenever the ,'th component of Q is zero.

The diffusion limit Q inherits much of the qualitative structure of the queueing network.

For example. we note that if c > 0. then (7.3) guarantees that eacn station can serve

customers islightly) faster than they arrive, so that the network ought to be stabie. The

following result, due to HARRISON and WILLIAMS (1987). gives the diffusion analog'-e
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Theorem 17. The diffusion process Q has a stationary probability distribution r if and

only if c, > 0 for I < i < d. Furthermore, any stationary probability distribution for Q is

necessarily unique.

Recall that if the inter-arrival and service time distributions are exponential, the queue-

ing network studied here is a Jackson network and the stationary distribution (when it

exists) is known to be of product form. This product form structure also manifests itself in

the diffusion limit Q. We say that a probability distribution r on ad is of product form

if d

wr(dzl x ... x dzd) = lp,(z,)dz,.
1=1

The next result is also due to HARRISON and WILLIAMS (1987).

Theorem 18. The diffusion process Q has a stationary probability distribution r of

product form if and only if c, > 0 for I < i < d and

(7.15) 2r,, = -(Pk, rkh + Pkr,,)

for k # *. Furthermore, if a product form stationary probability distribution r exists,

p,(z) = rh exp(-rxz)I(z > 0)

where 1, = 2,uc,/r,.

In addition, HARRISON and WILLIAMS (1989) show that the notion of quasire-

versibility for queueing networks extends, in a natural way, to the Brownian limit. Roughly

speaking, a Brownian model of a queueing station is quasireversible if and only if the de-

parture process has the same distribution as the arrival process. It is believed that a

network of quasireversible Brownian queueing stations must necessarily have a stationary

distribution of product form.

We note that in the Jackson network setting, a,2 = b2 = I and (7.15) is easily verified

from (7.14). In general, the stationary probability distribution ir cannot be calculated

in closed form analytically. Nevertheless, the It6-type argument of Section 6 (used there

to justify the backwards equation for one-dimensional reflected Brownian motion) can be

used to obtain an equation that typically characterizes the stationary distribution r. In

preparation for the statement of the result, let F = {Ze. : Zk = 0) be the k'th face of the

39



non-negative d-dimensional orthant. and let L and D be the differential operators defined

by
1 d a2 dL+

and

D, =. - i,

where 9 - c(i- P). Finally, let C2 be the space of functions I Rd- R such that f is

twice continuously differentiable and such that all partials up to order 2 are bounded on

{z :, > 0,1 < i < d}.

Theorem 19. Suppose r is a stationary probability distribution for Q. Then, there exist

finite measures vu .. , vd on F1 .... Fd such that for each ftC 2,

(7.16) J(Lf)(z),(dz) + I.j (D,f)(z)&,,(dz) = 0.

See HARRISON and WILLIAMS (1987) for details.

The equation (7.16) is known as the basic adjoint relationship satisfied by r. Given

the importance of the stationary distribution r from an application viewpoint, significant

activity is currently underway to solve (7.16) numerically. A recent paper by HARRTSON

and NGUYEN (1989) specializes its numerical treatment to d = 2. It shows that in the

two station setting, the numerical approximations obtained from Theorem 19 give good

results, in comparison with simulation, even for moderate traffic intensities.

For the class of open queueing networks that we have described above, it turns out that

sojourn times can also be approximated (in distribution) by appropriate diffusion limits.

To describe the notion of sojourn time, let h = (hi,._ hd) be a d-vector having non-negative

integer-valued co-ordinates, and fix a station j. (Let us adopt the convention that station

0 corresponds to the world external to the network.) Suppose that the routing matrix P

is such that it is possible for a customer, upon entering . and before returning to it. to

follow a route in which station k is visited precisely h& times (note that we must necessarily

have h, = 1): such an h is termed a j-accessible visit vector. A customer who follows

such a route is said to follow h upon entering j. The time it takes a specified customer

to follow h is called its sojourn time along h. For a j-accessible h. let D,,(j.h.t) be r.
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sojourn time (in the n'th approximating network) along h of the first customer that follows

h upon entering j after time t.

Before stating the limit theorem for D,,(j. h, t), recall that Theorem 16 implies that the

queue-lengths at each of the d stations (in the n'th approximating network) is of order

n1/2 in magnitude. Since each station has first come/first serve queueing discipline, it is

evident that the amount of time that a customer spends in the queue of station j is roughly

Qjl/s, where Q, is the queue-length at the instant at which the customer joins the queue

at station j. (We obtain the approximation Q,/, by noting that customers at station j

are served (asymptotically) at rate pj.) Hence, the sojourn time of a customer in the n'th

system is of order n1/ 2 in magnitude. Since time is measured in units of order n in the

n'th network (see Theorem 16), this implies that a customer visits all the stations along its

route instantaneously in the diffusion limit. Hence, in ihe diffusion time scale, queues and

workloads seen by a customer arriving to station j freeze while the customer follows h. As

a consequence, the limit process for sojourn times has the property that the order in which

stations are visited along a route does not affect the diffusion limit of the route's travel

time. Furthermore, the diffusion limits of D.(j,h,t) and D,,(k,h,t) are identical, provided

that h is both j-accessible and k-accessible: see REIMAN (1984) for details.

Theorem 20. Assume (7.3) and (7.12). Let Q(t) = (Q1(t),...,Qd(t)) be the limit process

specified by Theorem 16. Set Dn(j,h,t) = D,(j,h, nt)/nl/2 . Then,

d

DO(j, h, t) o M (/1

in D[0, ), as n- oo.

We conclude this section with a brief discussion of some extensions of the open queueing

model that has been described above. Firstly, (7.3) can be relaxed to deal with networks

in which certain stations are uot asymptotically in heavy traffic. (In other words, there

exists at least one station i for which P, (A(I - P)-'),.) This generalization has been

fully explored in CHEN and MANDELBAUM (1988). Basically, the stations of such a

network can be classified into one of three types: balanced, non-bottleneck, and strict

bottleneck stations. At a balanced station, the "effective arrival rate" (both internal and

external arrivals) is roughly identical to the service rate. and the station is in heavy traffic.

On the other hand. at a non-bottleneck station. the effective arrival rate is less than tie
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service rate, so that the station is in light traffic. As a consequence, the queue-length at
a non-bottleneck station is basically bounded (in a stochastic sense) as a function of n.
Thus, in the diffusion re-scaling in which the spatial variables are measured in units of
n 1

/2, the non-bottlenecks are essentially drained of customers instantaneously, after which

the corresponding queue-length processes are effectively zero. Hence, the diffusion limit

gives no information about the queue-lengths at the non-bottleneck stations. In some

sense, the queueing network can then be reduced to an analysis of the remaining balanced
and strict bottleneck stations. This is an example of what is known, in the literature.
as 'state space collapse." This should not be interpreted as suggesting that the non-

bottlenecks play no role in the diffusion limit for, in fact, they do. For example, the
diffusion limit needs to keep track of how customers move between stations in the reduced

network consisting of balanced and strict bottleneck stations. The routing matrix of the
full network (including non-bottleneck stations) must be analyzed in order to calculate the

submatrix which characterizes flows within the reduced network.

The behavior of the network at strict bottlenecks is comparable to that of a queue
in which the arrival rate is strictly greater than the service rate. As we saw in Section

5, oversaturated queues have very simple behavior. In particular, the queue-lengths grow

linearly in time. When appropriately centered to reflect the linear trend, the queue-length

process exhibits fluctuations of order n1/ 2. These fluctuations are contributed by a non-
reflecting Brownian motion term (from the non-bottleneck stations) as well as a reflecting

Brownian motion term (to handle input from the balanced stations).

Thus, the components of the vector-valued diffusion limit display three different types

of behavior. Components correspoading to non-bottlenecks vanish identically, whereas

balanced components exhibit reflection at the boundary of the non-negative orthant. On

the other hand, the strict bottlenecks display no non-trivial boundary behavior (other

than that induced from the balanced stations). This is because the diffusion limit merely

characterizes the non-zero fluctuations about the linear drift term, as the queue-lengths

drift to infinity. These fluctuations are of arbitrary sign.

We turn now to discussion of a second generalization of the queueing networks con-
sidered in this section. Suppose that the network serves two types of customers. one type

of which has a pre-emptive resume priority over the other at each station of the network.

In this setting. the high priority customers are unaffected by the low priority customer5
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Hence, in heavy traffic, the high priority customers race through the network relative to the

low priority customers. Thus, the queue-length processes (at the various stations) of the

high priority customers are negligible compared to those of the low priority customers. As

a consequence, in the diffusion limit, the components corresponding to high priority cus-

tomers vanish identically. However, the effect of the high priority customers is manifested

in the limit processes obtained for the low priority customers; see JOHNSON (1983) for

further details. It is also possible to obtain diffusion approximations for multiple customer

type networks, in which the routing is "feedforward" (i.e., the stations can be numbered

so that the route of each customer type is an increasing sequence). The queue discipline

at each station j is defined by a partition of the customer types into subsets H, and L,.

Customers of type icH, have pre-emptive resume priority over those of type kL,. Within

each subset H, and L,, the queue discipline is first come/first served. As in the previous

priority queue that was described, the queue-lengths of the high priority customers at

a particular station vanish in the diffusion limit. On the other hand, the queue-lengths

corresponding to lower priority customers at a particular station are represented by fixed

multiples of a single limiting marginal process corresponding to total queue-length at that

station. Thus, the diffusion limit for such a d station queueing network (with multiple

customer types) is basically a d dimensional process. This is another example of "state

space collapse" (i.e., the diffusion limit is d-dimensional, whereas the exact model records

the number of customers of each type at each station and is therefore higher dimensional):

this limit theorem is described in PETERSON (1985).

For single station open systems, several other diffusion approximations have been stud-

ied. JOHNSON (1983) considers a single station model with two or more customer types

under first come/first serve and processor sharing queue disciplines. A heavy traffic dif-

fusion limit is obtained for the total queue-length process; it is then shown that a fixed

fraction of the limit process corresponds to customers of a particular type. A similar result

is obtained in REIMAN (1983). The heavy traffic behavior of a two queue system in which

customers join the shortest queue is shown to converge to a limit process with equal frac-

tions of customers at each of the two stations. Thus, in the Limit, only the total number of

customers in the system varies stochastically. A further example of "state space collapse"

appears in REIMAN (1988), where a multi-class feedback queue with round-robin service

discipline is studied.
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We conclude this discussion of generalizations of Theorem 16 by pointing out that

the i.i.d. assumptions on the inter-arrival times, service times, and routing vectors are

unnecessary to the basic argument. As suggested by (7.4)-(7.6), all that is really needed

is that the various input proceses satisfy a joint FCLT. This point of view is stressed in

the modeling approach described i:4 HARRISON and WILLIAMS (1987) and HARRISON

(1985).

8. Diffusion Approximations for a Closed Network of Queues in Heavy Traffic

In this section, we describe the closed network analogs of the results given in Section

7 for open networks. We start by describing the basic model. As in the open case. we

consider a network of d queueing stations, in which each station has an infinite waiting

room and a single work-conserving server that serves customers in the order in which they

arrive. The customer routing between stations is assumed to be Markovian and is described

by a stochastic matrix P (called the routing matrix); we require that P be irreducible and

that P, = 0 for I < i < d. As in Section 7, let V, = {V(m): in > 1) be a sequence of i.i.d. unit

mean r.v.'s for which b? = vax V(m) < o. If pj(n) is the service rate at the i'th station in

the n'th network, then Vj(n)1Aj(n) is the actual duration of service for the m'th customer

served at the j'th station in the n'th network.

We assume that the n'th approximating network contains precisely [n"/'J customers.

Thus, the parameter n that indexes the system here has a physically tangible meaning

(unlike the open case); it characterizes the total number of customers in the closed network.

Let Q,(O) = (Qn1(0),...,Q,(0)) be a random d-vector having non-negative integer-valued

components for which Qni(0) +. . . + Q, (O) = Ln"/2J. The i'th component is to be interpreted

as the number of customers that are sitting in the queue of the i'th station waiting to

be served at time t = 0 (in the n'th system). We require that V1 ., Vd, Q.(O) be mutually

independent. The network that we have just described is termed a generalized closed

Jackson network.

To obtain heavy traffic behavior a, "ach of the d stations. we require that the service

rate p,(n) be approximately proportional to n.,, where ir = (r, ---, 7rl) is the unique stationary

probability vector associated with P (i.e.. rp = r). Thus, heavy traffic is obtained when

the service rate is roughly proportional to the relative expected number of visits that a
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customer makes to a given station. Stated in mathematical terms, we require that

(8.1) n1/2 (u(n) - M) -¢C

as n - o, where i,/p, = d (a constant). Since the diffusion approximation will be obtained

by speedia up iie by a factor of n and re-scaling space by a factor of nl/ 2, we can re-
express the conditions for heavy traffic in the following way. A diffusion limit will be a

reasonable approximation to a closed queue if the total number of customers m is large

and the service rate pi at the i'th station has the property that

max - rin(!.)
1<85<d ,

is roughly of order i/,m. Then, the diffusion limit will describe fluctuations, in the queueing

network, of order m on the time scale of order nl.

As in the open network setting, the theory of diffusion approximation for closed systems
depends critically on representing the vector queue-length process Q.(t) = (Q"1 i() .... Q (O)

as a regulated version of the centered input processes corresponding to the service times

and routing vectors. Specifically, one represents Q, as Q, = f(Z), where Z. is a process

that can be approximated by a Brownian motion and f(z) = z+h(z)(1 - P), where h satisfies

(7.9).

To state the diffusion approximation for the above class of closed networks, we need

to further assume that there exists a random d-vector Q(O) such that

(8 2) - /Q.(0) =:: Q(O)

as n - oc; the vector Q(O) must necessarily have components that add to one. Then. the

process Z, (when appropriately re-scaled) can be approximated by Z, where

(8.3) Z(t) = Q(O) + c(i - P)t + r l2B(t),

the random elements Q(O) and B appearing in (8.3) are independent. Also, B is a standard

Brownian motion, c is the vector appearing in (8.1) and r is the covariance matrix given

by
d

rb= M,6 ,&k(l + bl) - p.sb'Pjk - ubPj- pZiPiI,,( I - bl).
l-q

By applying continuous mapping ideas to the mapping f, one obtains the following result:

see CHEN and MANDELBAUM (1988) for a complete proof.
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Theorem 21. Assume (8.1) and (8.2). Let Q"(t) = Q.(nt)/n'/2 . Then,

QN =:f(Z) -Q

in Dp[0,oo) as n- o, where Z is defined by (8.3).

We observe that since the vector Q. is normalized by n1/1 to obtain Q6 , it is evident that

Q must be a stochastic process that lives on the simplex S = (zcR' : zi > 0, Z1 +. .. zj = 1). As

a consequence, the covariance matrix r must be singular (since the d-dimensional Brownian

motion Z must lie in a (d - 1) dimensional subspace). We henceforth assume that r is such

that the (d- 1) x (d- 1) principal submatrices of r are positive definite. Because of property

(7.10) of the regulator map, it turns out that Q is (as in Section 7) a diffusion process. In

fact, Q can be viewed as a regulated version of the Brownian motion Z. The regulation

forces Z to "reflect" in the direction of the i'th row of I - P whenever the i'th component

of Q is zero.

Since Q takes values in the component set S, it seems reasonable to expect that Q

possesses a stationary distribution 7r. This is the principal content of the following result.

due to HARRISON, WILLIAMS, and CHEN (1989).

Theorem 22. The diffusion process Q has a unique stationary probability distribution n.

The probability distribution r has a strictly positive density p(z) with respect to Lebesgue

measure on S.

Since a certain subclass of the diffusion processes Q described above can be obtained as

limits of Markovian Jackson networks having "product form" stationary distributions. one

hopes that the product form theory carries over to the diffusion setting, thereby permitting

p(z) to be calculated explicitly in certain cases. We say that p is an exponential density

if it can be representd in the form

d

p(z) = C 1 exp(-Yzi)
21

for zcS (for some constant C). The next result is also due to HARRISON, WILLIAMS.

and CHEN (1989).

Theorem 23. The density p of the stationary distribution ,r is an exponential density i:"

and only if

(8 4) 2 [,k = -(Pkrkk + 
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for j : k. Furthermore, if p is an exponential density, then

d

p(z) = C fexp(-rz,),

where,
S= 2pci/ri,

C = lx exp(-%zj)m(dz)

and m is Lebesgue measure on S.

As in the open case, condition (8.4) is automatically satisfied when b2 I 1 (i.e.. the

service times have the same coefficient of variation as does an exponential r.v.). Also. if

(8.4) is satisfied and p(n) = u for n > 1, then c = 0 and the stationary distribution r then

evidently reduces to uniform distribution on the simplex.

We conclude our discussion of the qualitative structure of the process Q by describing

the analog of the basic adjoint relationship (7.16) for closed networks; see HARRISON,

WILLIAMS, and CHEN (1989) for further details.

Theorem 24. Let L, D1, C, F be defined as in Section 7. Suppose w is the stationary.,

probability distribution for Q. Then, there exist finite measures vi--.. v, on F n S &. Fr

such that for each fcC2 ,

(8.5) ]L )(z)p(z)m(aZ) + J (Djf)(z)4(dz) = 0.

The development of numerical solvers for dealing with (8.5) remains an important open

problem.

Diffusion limits can also be obtained for the sojourn times that were defined in Section

7. The basic limit theorem is identical to Theorem 20 and the statement is omitted.

As for generalizations of the closed model that has been described here, a number of

possibilities have been investigated in the literature. In HARRISON, WILLIAMS. and

CHEN (1989), the assumption that the service requirements at each section are i.i.d. is

dropped, and replaced with a requirement that the input processes satisfy funct onal central

limit theorems. Although no proof is offered, the paper does calculate the appropriate

diffusion limit for such a model. Closed networks in which (8.1) is weakened to permit the

possibility of including stations in light traffic are studied in CHEN and MANDELBAU:,!
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(1988). As in the open case, the queue-length populations at the light traffic stations

vanish in the diffusion limit. In addition, closed networks with multiple customer classes

are considered in CHEN and MANDELBAUM (1988). The priority ranking of the various

customer classes is assumed to be the same at each station of the network. Again, the

theory is similar to that obtained in the open case; high priority customers disappear in the

diffusion limit, although they do influence the structure of the limiting process associated

with the lower priority customers.

9. Approximations for Queues with Many Servers

In this section. we discuss limit theorems for queues in which each station possesses

a single waiting room and a large number of servers. Customers are assigned to the

first available server on a first come/first serve basis. The types of limits obtained here

will typically not exhibit any of the boundary behavior that characterized the reflecting

Brownian motions studied in the heavy traffic settings of Sections 5, 7, and 8. On the

other hand, the limit processes that arise here need not be Markov processes. Thus. the

approximations typical of the many server context are not true diffusion approximations.

since the limit processes need not be diffusions. However, we choose to discuss these

approximations here because of their intrinsic importance and because the ideas iequired to

derive these limits are largely identical to those used to obtain the diffusion approximations

described earlier in this chapter (see Sections 2 and 3).

We initiate this discussion by considering a single station queue with an infinite number

of servers. Interesting limit behavior is obtained by sending the queue into heavy traffic.

Heavy traffic, in this setting, means that the arrival rate is high, so that the expected

number of busy servers is large. More precisely, consider a sequence of Gl/G/oo/oo queues

constructed in the following manner. The service time sequence V = {v, : i > 1} is i.i.d.

with common distribution F, whereas the inter-arrival times in the n'th system are an

independent sequence U,, = {U,, : i > 1} of i.i.d.r.v.'s in which U,, can be represented as

,/n; we assume that the system is idle at t = 0, for simplicity. Note that in the n'tr.

system, the inter-arrival times are re-scaled so that arrivals are occurring n times faster

than in the first system, whereas the service times are not re-scaled. This is in contras-

to the diffusion approximations previously discussed in this chapter, in which both inter-

arrival times and service times are re-scaled simultaneously. In any case, we will estabi-sy.

48



a limit theorem for the queue-length process at the station as the parameter n tends to

infinity.

The result is most transparent when the service time r.v.'s have a discrete distribution

with finite support. Suppose, in particular, that F assigns probability p, to the value z,.

for I < i < m. Let N,.(t) be the total number of customers having received service time z,

by time t in the n'th system. Because the n'th inter-arrival stream is obtained from the

first inter-arrival stream by speeding it up by a factor of n, we may write N,,,(t) = V,(nt).

where N.) 4 Nil(.). Let N(t) = NI(t)+... + N,,,(t) be the total number of customers to arrive

by time t in the first system. Then,

N(I)
.'()= I(v z,)

.1=1

Suppose that a' = varU, < cx and that A-' = EUI > 0. Then, the multivariate version of

Donsker's theorem applies (see Theorem 4), yielding the fact that

n 1 Ln"J I 1 LnJ -L Ij

(91) ,,-/ j =zi) -)-tpi, .... ) . U,-t.-1

converges to a Brownian motion taking values in iRk'. Using a random time change

argument similar to that used to obtain (5.1), we can substitute t' = N(nt)/n into (9.1).

thereby yielding the fact that

n1/2 /N(nt) N(M) .V, (nt) N(nt) ,t N (nt) A,
(f n1 n I.. I W1 n n

converges to a Rn' -valued Brownian motion. The continuous mapping principle then

implies that

(9.2) n/2 N (t) Apt, t,.... it) n ,,,t)

converges to an m-dimensional Brownian motion B = (B(t) = (B1 (t),.... B,(t)) :t > 0). Re-

calling that the service times for customers corresponding to N,,(t) are all identical to z,.

we find that Q,,,(t) = V,,,(t) - N,,,((t - z,) A 0), where Q.,(t) is the number of customers at

the station at time t in the ,'th system that were assigned service time z,. Consequently.

Q,(t) (the total number of customers at the station at time in the n'th system) can be

represented as

3=1
Q,(f) = (., t)- V,, z,) 0))
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It then follows from (9.2) that

(9.3) n 1/2(22(" ) -AE Vi At,)=Z(B.(t) - B,((t- ,vO)).
(93) gal2

Since Brownian motion has finite dimensional distributions that are Gaussian, it is ev-

ident that the same must be true of the limit process appearing in (9.3). As a consquence.

the limit appearing in (9.3) is termed a Gaussian approximation. Gaussian processes

are highly tractable, since their finite dimensional distributions are totally characterized

by their mean and covariance functions. Thus, these limit processes are somewhat easier

to use (when applicable) than the diffusion limits of Sections 7 and 8, since the diffusions

obtained there typically require sophisticated numerical routines to calculate performance

measures of interest. We also note that (9.3)'s limit process has the interesting property

that for t > max{z, : I < i < m), the marginal distribution is independent of t (i.e., the system

reaches steady-state in finite time).

A straightforward calculation shows that the covariance function of the limit appearing

in (9.3) is given by

(9.4) c(8, a+t) = AJ F(u)(1 - F(t+u))du+a 2Aj3 (1 - F(t + u))(1 - F(u))du

for s. t > 0 (note that the mean of (9.3)'s limit is identically zero). Since r.v.'s with arbitrary

distribution can be approximated by discrete r.v.'s, this suggests that the above limit

theorem ought to hold more generally. The following theorem is due to BOROVKOV

(1967).

Theorem 25. Consider a sequence of GI/G/oc/oo queues constructed as described earlier

in this section. Suppose that A- ' = EU > 0 and 2 = vaU > oc. If Vat V < oc, then

p1/2 (Q dt) - E{V 1 A } Q()

in D, (0. oc), where {Q(t): t > 0) is a process having Gaussian finite dimensional distribu-

tions. Furthermore, EQ(t) = 0 and its covariance function is given by (9.4).

In contrast to the diffusion limits obtained earlier in this chapter, the distribution of
the Gaussian limit Q = {Q(t) : t > o} depends on the entire service time distribution F. no*
jus t on its mean and variance. Thus, the tail behavior of the service times has a sicni,,a-.

impact on an infinite ser-ver queue in heavy traffic. We further note that if Ft) = , -
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then the covariance function is identical to that of an Ornstein-Uhlenbeck process. As a

consequence, it turns out that for a GI/M/oo/0o queue, the limit process Q is an Ornstein-

Uhlenbeck process with infinitesimal mean -jz and infinitesimal variance (A3
0,

2 + A)). Thus.

in the case of exponential service times, the limit is a diffusion. However, Q is typically not

Markov. GLYNN (1982) shows that Q is Markov if and only if F(t) = I - p-' for 0 < p 1

and , >0.

The process Q(t) converges in distribution to a limit Q(cc) as t - oo. The steady-state

r.v. Q(oo) is normally distributed with zero mean and variance

Z = '- 1 + (A2
0
2 - 1)p (1 - F(t))2dt),

where p-1 = EV. This is another confirmation of the analytical tractability of the Gaussian

limit Q; clearly, Q(o) can be used as an approximation to the long-run behavior of a

Gl/G/oc/oo queue in heavy traffic.

Similar Gaussian approximations to Theorem 25 can be obtained for the cumulative

departure process of a Gl/G/0/oo> queue of the type described above; see WHITT (1984) for

further details. In addition, Gaussian limits can be derived for networks of infinite server

stations; the relevant techniques are sketched out in WHITT (1982). Finally, it turns out

that one can extend these results to finite server stations in which the number of servers

increases with the arrival rate suitably rapidly. Note that the number of busy servers

(according to Theorem 25) in the n'th infinite server queue is approximately nAEV. He.,ce.

if the number of available servers a, associated with the n'th system grows sufficiently more

rapidly than nAEV, the finite server model will act asymptotically like the infinite server

system. Specifically, this holds if nll(s, - nAEV) - oo as n -- oo.

We conclude this section by briefly discussing approximations for closed networks with a

large number of servers at each station. Again, we start by considering the case where each

of the d stations has an infinite number of servers. We assume, for concreteness, that the

customer routing between stations is Markovian (although this can easily be generalized).

In addition, the service time streams for each of the d stations form independent sequences

of i.i.d. random variables with continuous distributions. We further assume that at t = 0.

all the customers in the network are sitting at the first station, waiting to be served.

We shall describe a limit theorem for the network by letting the number of customers

contained within the network tend to infinity. In contrast with previous approximation.s5

that we have analyzed, there will be no need to re-scale time in any way.
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The key observation here is to recognize that since each station has an infinite number

of servers, customers never queue for service. As a consequence, customers do not interfere

with each other as they circulate through the network. Hence, each of the n paths followed

by customers through the network are independent. Furthermore, it is clear that these

paths are identically distributed. Let X,(t) be the station occupied by the i'th customer

at time t. Then, Q,(t), the number of customers at the j'th station at time t in the n'th

system, is given by

Q,,(t) = IM (x( =j).

If we let Y,(t) = (I(X,(t) = 1),._ I(X,(t) = d)), we conclude that Q,(t)= (Q,, 1(t) ,.... Q,(t)) can

be expressed as
Q,,tt) = !;t

=

and hence Q,, = {Q,,(t): t > O} can be expressed as a sum of n i.i.d. D'R4,[c)-valued random

elements. Central limit theorems exist for such objects. When applied in this setting, we

obtain the following limit theorem: see GLYNN and KURTZ (1989) for additional details.

Theorem 26. Let Q be the Gaussian process with covariance function identical to that

of Y1. Then,
n 1/2 (Q-( t ) -EYe(t)) =,Q(t)

as n - w, in DRo,o).

The limit process Q = {Q(t) : t > o} is again a Gaussian process that is typically non-

Markovian. Since the processes Q,, are Markov when the service times are exponential, the

same property is inLerited by the limit Q in that case, however.

Suppose now that the routing matrix is irreducible and that at least one station has

an associated service time distribution that is spread-out (i.e., some n-fold convolution of

the distribution possesses a density component). We further require that the mean p-' of

the service time distribution for the i'th station is finite for 1 < i < d. Then, Q,(t) =,' x,

at t - x, for some limiting r.v. Q,(oc). The following result gives an approximation to

Q,*(x) when the number of customers n in the network is large.

Theorem 27. Let 7r be the unique stationary distribution of the routing matrix P Se,,

P,= , ("=t ') and let p = p. p . Then,
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n 1/2 ° r F 2 N(o, I)

in JR, when ri. =-p,(i - p,) and r,, = -pp, for i # j.

Limit theorems have also been derived for closed Jackson networks in which the number

of servers at each station is large but finite. (Recall that in a Jackson network, service

times are exponentially distributed.) The limit processes in this setting are typically

vector-valued Ornstein-Uhlenbeck processes. The tools that are used here are somewhat

different from those described earlier in this chapter. Rather than attempt to represent

the queue-length process as some continuous functional of its inputs (thereby permitting

one to use continuous mapping ideas), the technique that has commonly been used here

is to show that the infinitesimal generator of an appropriately scaled version of the vector

queue-length process converges to the infinitesimal generator of the limiting Ornstein-

Uhlenbeck process. This approach is analytical, in contrast to the more probabilistic

continuous mapping aproach used earlier in this chapter. For two-station networks, the

work of STONE (1963) on weak convergence of birth death processes can be used. For

more general networks, the techniques outlined in STROOCK and VARADHAN (1979)

have proved successful. For further details on these limit theorems, see IGLEHART (1965)

and PRISGROVE (1987).

10. Conditional Weak Convergence Theorems

In this section, we briefly describe an interesting class of diffusion limits that arise as

approximations to the behavior of certain stochastic processes when conditioned on an

appropriate rare event.

Consider, for example, the behavior of the waiting time sequence (W, : n > 0} of the

single server queue GI/G/I/oo. As discussed in Section 5, the We's satisfy the recursion

Kn+I = (W.+X,I] + , where X. = Vo.--Uo and V4. U,, are the n'th service time and interarrival

time, respectively. If we assume that the zero'th customer encounters an idle server, then

W0 = O. We shall be interested in the behavior of the waiting time sequence within the first

busy period (i.e., over the interval (0, T), where T = inf{n > I : Wo = 0)). We note that if we

let S, = Z"=1 X, (S0 = 0), W = 5, for n < T. Hence, we can alternatively view the problem

as the study of random walk over the interval [0,T'), where T' = inf(n > I : S', < } is the

time of first entry into (-x.0].
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for 0 < t < 1. We note that X.cDR[O, 1], the function space consisting of the restrictions

of functions in D(0, oo) to the interval [0, 1]. The idea is now to study the behavior of X,

within the first -busy period. One way to accomplish this is to consider the conditional

probability distribution

P,(.) = P(Xc - IT > n).

This permits us to study only those paths of the waiting time sequence in which the first

busy period is still in progress at time n. The following theorem is due to IGLEHART

(1974).

Theorem 28. Suppose that EIX 113 < oc and that X, is either non-lattice or integer-valued

with span 1. Then,

P,, =, P

as n- o (in DR[0, 1]), where P(.) = P{B+r.}.

Hence, the behavior of the waiting time sequence, when conditioned on the first busy

period still being in progress, is well approximated by that of a Brownian meander.

Brownian excursion also arises as a limit of the waiting time sequence when conditioned

on the behavior of the first busy period. Specifically, let

.(.) = P{X.r. IT = n}.

Hence, P, describes the distribution of precisely those paths of the waiting time sequence

that conclude their first busy period at time n. IGLEHART (1975) states that P, = P'

as n - o0, under certain conditions on Xi, where P'(.) = P(B+.). Note that Brownian

excursion returns to zero at time i = 1, in accordance with the observation that the n'th

waiting time is zero if T = n. Further conditioned limit theorems of the above type may be

found in DURRETT (1980), KAIGH (1976), and KAO (1978).

The mathematical tools that are used to establish conditioned limit theorems are some-

what different from those described earlier in this chapter. For example, even if the un-

conditional approximating processes are tight, there is no guarantee that the conditioned

approximations will be tight when the conditioning event has probability tending to zero.

Hence, the problem of establishing tightness becomes more delicate here. As a conse-

quence, most of the results available pertain to conditioned limit theorems for very specific

classes of stochastic process (for example, random walk). Typically, the structure of ::e
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process plays an important role in the argument that is needed. However, for certain types

of conditioned limit theorems, general tools are available; see, for example, DURRETT
(1978).

References

ABATE, J. and W. WHITT (1987a). Transient behavior of regulated Brownian motion I:

starting at the origin. Adv. ARlI. Prob. 12, 560-598.

ABATE, J. and W. WHITT (1987b). Transient behavior of regulated Brownian motion

II: non-zero initial conditions. Ady. ARl1. Prob,. 12, 599-631.

BILLINGSLEY, P. (1968). Convergence of Probability Measures. John Wiley, New York.

BOROVKOV, A. (1967). On limit laws for service processes in multi-channel systems.

Siberian Math. J. a, 746-763.

CHEN, H. and A. MANDELBAUM (1988). Stochastic discrete flow networks: diffusion

approximations and bottlenecks. Working Paper, Graduate School of Business, Stan-

ford University, Stanford, CA.

DUFFIE, D. and P. PROTTER (1988). From discrete to continuous time finance: weak

convergence of the financial gain process. Working Paper, Graduate School of Business.

Stanford University, Stanford, CA.

DURRETT, R. (1980). Conditioned limit theorems for random walks with negative drift.

Z. Wahrsch. verw. Gebiete U, 277-287.

DURRETT, R. (1978). Conditioned limit theorems for some null recurrent Markov pro-

cesses. Ann. Probability , 798-828.

ETHIER, S.N. and T.C. KURTZ (1986). Markov Processes: Characterization and Con-

gernc. John Wiley, New York.

GLYNN, P.W. (1982). On the Markov property of the GI/G/oo Gaussian limit. Adv. Appl.
Prob. 1A, 191-194.

GLYNN, P.W. and W. WHITT (1986a). Sufficient conditions. Queueing Systems 2.

GLYNN. P.W. AND W. WHITT (1986b). A central limit version of L = AW. Queuein

Systems 2, 191-215.

GLYNN. P.W. and D.L. IGLEHART (1989). Simulation output analysis using standard-

ized time series. To appear in Math. Oper. Res.

56



GLYNN, P.W. and T.G. KURTZ (1989). Gaussian approximations for closed networks

of infinite server queues. Working Paper, Dept. of Operations Research, Stanford

University, Stanford, CA.

HARRISON, J.M. (1985). Brownian Motion and Stochastic Flow Systems. John Wiley.

New York.

HARRISON, J.M. and V. NGUYEN (1989). The QNET method for two-moment analysis

of open queueing networks. Working Paper, Graduate School of Business, Stanford

University, Stanford, CA.

HARRISON, J.M. and M.I. REIMAN (1981). Reflected Brownian motion on an orthant.

Ann. Probability 2, 302-308.

HARRISON, J.M. and R.J. WILLIAMS (1987). Brownian models of open queueing net-

works with homogeneous customer populations. S ics 22, 77-115.

HARRISON, J.M. and R.J. WILLIAMS (1989). On the quasireversibility of a multiclass

Brownian service st,.ion. Working Paper, Graduate School of Business, Stanford

University, Stanford, CA.

HARRISON, J.M., WILLIAMS, R.J. and H. CHEN (1989). Brownian models of closed

queueing networks with homogeneous customer populations. Working Paper, Graduate

School of Business, Stanford University, Stanford, CA.

IGLEHART, D.L. (1965). Limiting diffusion approximations for the many server queue

and the repairman problem. J. AR2l. Probab. 2, 429-441.

IGLEHART, D.L. and W. WHITT (1970a). Multiple channel queues in heavy traffic, I.

Adv. Appl. Prob. 2, 150-177.

IGLEHART, D.L. and W. WHITT (1970b). Multiple channel queues in heavy traffic, II:

sequences, networks, and batches. Adv. Appl. Prob. 2, 355-369.

IGLEHART, D.L. (1974). Functional central limit theorems for random walks conditioned

to stay positive. Ann. Probability 2, 608-619.

IGLEHART, D.L. (1975). Conditioned limit theorems for random walks. Stochastic

ses and Related Topics, Vol. 1, ed. M. Pur. Academic Press, New York.

JOHNSON, D.P. (1983). Diffusion approximations for optimal filtering of jump processes

and for queueing networks. Ph.D. Dissertation, University of Wisconsin, Madison, WI

KAIGH. W.D. (1976). An invariance principle for random walks conditioned by a late

return to zero. Ann. Probability 4, 115-121.

57



KAO, P. (1978). Limiting diffusion for random walks with drift conditioned to stay posi-

tive. J 15, 280-291.

KARLIN, S. and H.M. TAYLOR (1975). A First Course in Stochastic Processes. Aca-

demic Press, New York.

KARLIN, S. and H.M. TAYLOR (1981). A Second Course in Stochastic Processes. Aca-

demic Press, New York.

KINGMAN, J.F.C. (1961). The single server queue in heavy traffic. Proc. Camb. Phil.

So. ,7, 902-904.

KOMLOS, J., MAJOR, P. and G. TUSNADY (1975). An approximation of partial sums

of independent r.v.'s and the sample d.f. I. Z. Wahrsch. vesw. Gebiete 32, 111-131.

MARSHALL, K.T. (1968). Some inequalities in queues. R 1 , 651-665.

NUMMELIN, E. (1984). General Irreducible Markov Chains and Non-Negative Oper-

atr. Cambridge University Press, Cambridge.

PETERSON, W.P. (1985). Diffusion approximations for networks of queues with multiple

customer types. Ph.D. Dissertation, Stanford University, Stanford, CA.

PHILIPP, W. and W. STOUT (1975). Almost Sure Invariance Princivles for Partial Sums

of Weakly Dependent Random Variables, American Mathematical Society, Provi-

dence, R.I.

PRISGROVE, L.A. (1987). Closed queueing networks with multiple servers: transient and

steady-state approximations. Ph.D. Dissertation, Stanford University, Stanford, CA.

PROHOROV, Y. (1956). Convergence of random processes and limit theorems in proba-

bility theory. Theor. Probability Apl. 1, 157-214.

PROHOROV, Y. (1963). Transient phenomena in processes of mass service. Litovsk. Mat.

5. 2, 199-205. (In Russian.)

REIMAN, M.I. (1983). Some diffusion approximations with state space collapse. Proc.

Int'l. Seminar on Modeling and Performance Evaluation Methodology. Springer-

Verlag, New York.

REIMAN. M.I. (1984). Open queueing networks in heavy traffic. Math. Oper. Res. 9.

441-458.

REIMAN, M.I. (1988). A multiclass feedback queue in heavy traffic. Adv. Appl. Prob

20, 179-207.

58



ROSENKRANTZ, W. (1978). On the accuracy of Kingman's heavy traffc approximation

in the theory of queues, 7. Wahrsch. verw. Gebiete U, 115-121.

SCHRUBEN, L.W. (1983). Confidence interval etimation using standardized time series.

,, 109o-1108.

STONE, C.J. (1963). Limit theorems for random walks, birth and death processes, and

diffusion processes. Illinois J. Math, 1, 638-660.

STROOCK, D.W. and S.R.S. VARADHAN (1979). Multidimensional Diffusion Processes.

Springer-Verlag, New York.

WHITT, W. (1982). On the heavy-traffic limit theorem for GI/G/ queues. Ady_ $I

E 4, i 171-190.

WHITT, W. (1984). Departures from a queue with many busy servers. Math, Oper. Res.

2, 534-544.

YAMADA, K. (1984). Diffusion approximations for storage processes with general release

rules. Math. Oper. Res. 2, 459-470.

59


